

unSP Programmer’s Guide
V1.0 November 26, 2007

No.19, Industry E. Rd. IV, Hsinchu Science Park, Hsinchu City 30077, Taiwan, R.O.C.

Tel: +886-3-666-2118 Fax: +886-3-666-2117 Web: www.generalplus.com

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 2 V1.0 November 26, 2007

Important Notice

GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice.

Information provided by GENERALPLUS TECHNOLOGY INC. is believed to be accurate and reliable. However,

GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may appear in this document.

Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing

your order. No responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of

patent or other rights of third parties which may result from its use. In addition, GENERALPLUS products are

not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where

a malfunction or failure of the product may reasonably be expected to result in significant injury to the user,

without the express written approval of Generalplus.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 3 V1.0 November 26, 2007

Table of Content

1 Introduction...7

1.1 General Description ...7

1.2 Pin Diagram ...7

1.2.1 Pin Diagram and Description of unSP-1.2..7

1.2.2 Pin Diagram and Description of unSP-1.3..8

1.2.3 Pin Diagram and Description of unSP-2.0..10

1.3 Features ..11

1.3.1 Features of unSP-1.0 and unSP-1.1 ..11

1.3.2 Features of unSP-1.2...12

1.3.3 Features of unSP-1.3...13

1.3.4 Features of unSP-2.0...14

1.4 Architecture..16

1.4.1 Architecture of unSP-1.0 and unSP-1.1 ..16

1.4.2 Architecture of unSP-1.2 ..17

1.4.3 Peripheral Interface of unSP-1.2...18

1.4.4 Architecture of unSP-1.3 ..20

1.4.5 Architecture of unSP-2.0 ..22

1.4.6 Pipeline Feature of unSP-2.0 ..23

1.5 Register ..24

1.5.1 Register of unSP-1.0 and unSP-1.1...24

1.5.2 Register of unSP–1.2 ..24

1.5.3 Register of unSP-1.3 ...26

1.5.4 Registers of unSP- 2.0...29

1.6 Memory..31

1.6.1 Memory Map of unSP...31

1.6.2 Memory Interface of unSP-1.2 ...31

1.6.3 Memory Architecture of unSP-1.3..34

1.6.4 Memory Architecture of unSP-2.0..36

1.6.5 Memory Interface of unSP–2.0...37

1.7 Addressing Modes ...43

1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1 ...43

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 4 V1.0 November 26, 2007

1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0 ...44

1.7.3 9 addressing modes of unSP-1.3..45

1.8 Interrupts ..46

1.8.1 Interrupts of unSP-1.0 and unSP-1.1 ..46

1.8.2 Interrupts of unSP-1.2...47

1.8.3 Interrupts of unSP-1.3...51

1.8.4 Interrupts of unSP-2.0...54

1.9 Data Types ...60

1.10 ALU Operation Types..60

1.11 Conditional Branches...61

2 unSP- 1.1 Instruction Set ..63

2.1 unSP Instructions Classification ..63

2.1.1 Notation...63

2.1.2 Instruction Classification ..64

2.2 unSP Instruction Format ..64

2.3 unSP-1.1 Instruction Set ..66

2.3.1 Data-Transfer Instructions ..66

2.3.2 Arithmetic/Logical-Operation Instructions...70

2.3.3 Transfer-Control Instructions..85

2.3.4 Miscellaneous Instructions..89

3 unSP -1.0 Instruction Set ..93

3.1 General Description ...93

3.2 unSP-1.0 Instruction Cycles ...93

4 unSP -1.2 Instruction Set ..105

4.1 unSP-1.2 Instruction Set ..105

4.1.1 Data-Transfer Instructions ..105

4.1.2 Data Processing Instructions...108

4.1.3 Data Segment Access Instruction ...128

4.1.4 Transfer-Control Instructions..129

4.1.5 Miscellaneous Instructions..133

4.1.6 Instruction Set Summary...136

5 unSP-1.3 Instruction Set ...138

5.1 unSP-1.3 Instruction Set ..138

5.1.1 Byte Register Indirect ...138

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 5 V1.0 November 26, 2007

5.1.2 Byte Indexed Address ...139

5.1.3 Byte Register Indexed Address...139

5.1.4 Special Register Access ..140

6 unSP-2.0 Instruction Set ...143

6.1 unSP-2.0 Instruction Cycles...143

6.1.1 Data-Transfer Instructions ..143

6.1.2 Data Processing Instructions...144

6.1.3 Data Segment Access Instruction ...153

6.1.4 Transfer-Control Instructions..154

6.1.5 Miscellaneous Instructions..156

6.2 New Instructions of unSP-2.0 Instruction Set..158

6.2.1 Data-Transfer Instructions ..158

6.2.2 Data Processing Instructions...161

6.2.3 Instruction Set Summary...170

6.3 Stall Condition ...174

7 Appendix A Difference Between un S P - 1.2 & unSP- 1.3 ..179

8 Appendix B Difference Between un S P - 2.0 & unSP- 1.2 ..180

9 Appendix C Comparison Between unSP Versions...181

10 Appendix D CPU Cycle Formula and Examples..183

c.1 unSP 1.2 Cycle Formula...183

c.2 unSP 1.3 Cycle Formula ..186

c.2 unSP 2.0 Cycle Formula ..189

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 6 V1.0 November 26, 2007

Revision History

Revision Date Revised By Remark

V1.0 2007/11/26 Summer Yi Original

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 7 V1.0 November 26, 2007

1 Introduction

1.1 General Description

The unSP, pronounced as micro-n-S-P, is the first 16-bit microprocessor developed by Generalplus.

Not only does the unSP perform general operations such as addition, subtraction and other logical

operations, but it also supports multiplication and inner-product operations for digital signal processing.

Now, the unSP has a series of version named unSP 1.0, unSP 1.1, unSP 1.2, unSP 1.3 and unSP 2.0.

1.2 Pin Diagram

1.2.1 Pin Diagram and Description of unSP-1.2

 Pin Diagram

Figure 1.1

 Pin Description

Table 1.1

Name I/O Description Number

CLK INPUT External clock 1

RES INPUT External reset 1

FIQ INPUT Fast interrupt request 1

IRQ INPUT Normal interrupt request 1

IRQS INPUT Normal interrupt request select 3

DMAQ INPUT DMA request 1

MRDY INPUT Memory data ready signal 1

TEST INPUT Test mode select pins 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 8 V1.0 November 26, 2007

Name I/O Description Number

HDUMPROM INPUT Dump internal ROM to memory bus 1

SLEEP INPUT Sleep mode 1

PD INPUT Power down mode 1

ADDR OUTPUT Address bus 22

PREB OUTPUT Memory pre-charge signal 1

RDB OUTPUT Memory read enable signal 1

WEB OUTPUT Memory write enable signal 1

WREN OUTPUT Memory accessing mode 1

DMACK OUTPUT DMA acknowledge 1

CHOLD OUTPUT CPU stall signal 1

EXTA OUTPUT Access data with DS 1

LDOP OUTPUT Fetch instruction into CPU 1

INTS OUTPUT CPU operation mode 4

DATA INOUT Data bus 16

1.2.2 Pin Diagram and Description of unSP-1.3

 Pin Diagram

Figure 1.2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 9 V1.0 November 26, 2007

 Pin Description

Table 1.2

Name I/O Description Number

CLK INPUT External clock 1

RES INPUT External reset 1

FIQ INPUT Fast interrupt request 1

IRQ INPUT Normal interrupt request 1

IRQS INPUT Normal interrupt request select 3

DMAQ INPUT DMA request 1

MRDY INPUT Memory data ready signal 1

TEST INPUT Test mode select pins 2

INT_BASE INPUT Interrupt vector base address 10

HDUMPROM INPUT Dump internal ROM to memory bus 1

SLEEP INPUT Sleep mode 1

PD INPUT Power down mode 1

ADDR OUTPUT Address bus 22

RAM_LBE OUTPUT Upper byte Enable 1

RAM_UBE OUTPUT Lower byte Enable 1

ADDR_CHANGE_B OUTPUT Address change signal 1

STACK_ACCESS OUTPUT Indicate that CPU is accessing stack 1

PREB OUTPUT Memory pre-charge signal 1

RDB OUTPUT Memory read enable signal 1

WEB OUTPUT Memory write enable signal 1

WREN OUTPUT Memory accessing mode 1

DMACK OUTPUT DMA acknowledge 1

CHOLD OUTPUT CPU stall signal 1

EXTA OUTPUT Access data with DS 1

LDOP OUTPUT Fetch instruction into CPU 1

INTS OUTPUT CPU operation mode 4

DATA INOUT Data bus 16

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 10 V1.0 November 26, 2007

1.2.3 Pin Diagram and Description of unSP-2.0

 Pin Diagram

Figure 1.3

 Pin Description

Table 1.3

Name I/O Description Number

CLK Input CPU clock 1

RESET_B Input CPU reset 1

FIQ_B Input Fast interrupt request (level trigger) 1

IRQ_B Input Interrupt request (level trigger) 1

IRQS Input Interrupt request source 3

TEST Input Test mode select 2

INST_ADDR Output Instruction Bus address 22

INST_DI Input Instruction Bus data input 16

INST_DO Output Instruction Bus data output 16

INST_RD_B Output Instruction Bus read enable signal 1

INST_WE_B Output Instruction Bus write enable signal 1

INST_RDY Input Instruction Bus ready signal 1

DATA_ADDR Output Data Bus address 22

DATA_DI Input Data Bus data input 16

DATA_DO Output Data Bus data output 16

DATA_RD_B Output Data Bus read enable signal 1

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 11 V1.0 November 26, 2007

DATA_WE_B Output Data Bus write enable signal 1

DATA_RDY Input Data Bus ready signal 1

BUS_FIGHT Input Instruction Bus & Data Bus access same 1

LDIR Output Load next instruction 1

1.3 Features

1.3.1 Features of unSP-1.0 and unSP-1.1

 16-bit micro controller with DSP function

 Memory bus interface

 Address width: 22-bit

 Data width: 16-bit

 4M words (8M bytes) memory space

 64 banks/ 64k words per bank

 8*16-bit registers

 4 general registers (R1~R4)

 4 system registers (SP, BP, SR, PC)

 10 interrupts

 1 fast interrupt (FIQ)

 8 normal interrupt (IRQ0-IRQ7)

Software interrupt (BRK)

 6 addressing modes

 Register Direct(R)

 Register Indirect ([R])

 Immediate (IM6/IM16)

 Memory Absolute Address ([A6]/ [A16]/

[A22]) Indexed Address ([BP+IM6])

 PC Relatively (PC+IM6)

 16-bit multiplication

 2 operation modes: signed*signed, unsigned*signed

 16-levels inner product operation

 2 operation modes: signed*signed, unsigned*signed

 4 guard bits to avoid overflow

Difference between unSP -1.0 and unSP- 1.1

UnSP - 1.1 is an enhanced version of unSP -1.0. The behaviors of CS and DS registers are changed to

facilitate large program execution and large data access.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 12 V1.0 November 26, 2007

Table 1.4

 UnSP 1.0 unSP 1.1

GOTO instruction

The target address is

limited in current page

(16-bit, implemented

as PC=target_addr).

The target address can be any address in the

4M words memory (22-bit).

CS register

auto-increment/decrement
N/A

1. New feature
2. During program execution, PC will be

incremented by one continuously. If a carry
takes place, CS will be incremented by one.

3. Branch instruction versus PC is based on
the combination of CS and PC. The result
will be stored back to the CS and PC.

DS register

auto-increment/decrement
N/A

1. New feature.
2. In indirect addressing mode, if the D:[++Rs] /

D:[Rs++] / D:[Rs--] are used, these
operations are executed based on the 22-bit
register arithmetic and the final result is
stored back to DS and RS.

Instruction cycles Longer
Generally speaking, most instruction cycles are
faster than unSP 1.0.

1.3.2 Features of unSP-1.2

 16-bit micro controller with DSP function

 Memory bus interface

 Address width: 22-bit

 Data width: 16-bit

 4M words (8M bytes) memory space

 64 banks/ 64k words per bank

 13*16-bit registers

 4 general registers (R1~R4)

 4 secondary registers (SR1~SR4)

 4 system registers (SP, BP, SR, PC)

 1 flag register (FR)

 10 interrupts

 1 fast interrupt (FIQ)

 8 normal interrupt (IRQ0-IRQ7)

 Support IRQ nested mode with user customized priority

Software interrupt (BRK)

 6 addressing modes

 Register

 Immediate

 Direct

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 13 V1.0 November 26, 2007

 Indirect

 Multi-indirect

 Displacement

 16-bit multiplication

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 Integer/Fraction mode

 16-levels inner product operation

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 Integer/Fraction mode

 4 guard bits to avoid overflow

 Non-restoring Division

 32-bit dividend and 16-bit divisor

 Need 16 continuous operations (DIVS, DIVQ) to generate correct quotient

 Bit-operation

 Bit test/ set/ clear/ inverse operation

 Destination can be register or memory

 Effective-exponent detect operation

 16-bit shift operation

Support 32-bit shift operation by combining 2 shift instructions

 Support DMA function

 Support power down/sleep mode

1.3.3 Features of unSP-1.3

The most significant difference between unSP 1.2 and unSP 1.3 is the byte addressing modes in

unSP1.3.

 16-bit micro controller with DSP function

 Memory bus interface

 Address width: 22-bit

 Data width: 16-bit

 4M words (8M bytes) memory space

 64 banks/ 64k words per bank

 Byte accessing-mechanism with new addressing mode

 14*16-bit and 1*6-bit registers

 4 general registers (R1~R4)

 4 secondary registers (SR1~SR4)

 6 system registers (SS, MDS, SP, BP, SR, PC)

 1 flag register (FR)

 10 interrupts

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 14 V1.0 November 26, 2007

 1 fast interrupt(FIQ)
 8 normal interrupt(IRQ0-IRQ7)

 Support IRQ nested mode with user customized priority

 Software interrupt (BRK)

 9 addressing modes

 Register

 Immediate

 Direct

 Indirect

 Multi-indirect

 Displacement

 Byte register indirect

 Byte indexed address

 Byte register indexed address

 16-bit multiplication

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 Integer/Fraction mode

 16-levels inner product operation

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 Integer/Fraction mode

 4 guard bits to avoid overflow

 Non-restoring Division

 32-bit dividend and 16-bit divisor

 16 continuous operations (DIVS, DIVQ) or only one operation (DIVSS, DIVUU) to generate

correct quotient.

 Bit-operation

 Bit test/ set/ clear/ inverse operation

 Destination can be register or memory

 2 address mode (direct, indirect) for memory access.

 Effective-exponent detect operation

 16-bit shift operation

Support 32-bit shift operation by combining 2 shift instructions

 Support DMA function

 Support power down/sleep mode

1.3.4 Features of unSP-2.0

 16-bit micro controller with DSP function

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 15 V1.0 November 26, 2007

 unSP 1.2 binary compatible

 Modified Harvard architecture

 Instruction memory bus (IM): addr: 22-bit / data: 16-bit

 64 banks / 64k words per bank

 Data memory bus (DM): addr: 22 bits / data: 16-bit

64 banks / 64k words per bank

 2 configurations

 IM/DM share 4M words memory space (default)

 IM/DM own separate 4M words memory space (Not recommended. Assembler and linker do

not support overlapped address of IM and DM.)

 ~4-stage pipelined architecture

 IF (Instruction Fetch)

 DE (Decode)

 MR (Memory Read Access)

 EX/MW (Execution/Memory Write)

 21*16-bit registers

 4 general registers (R1-R4)

 4 secondary-bank registers for interrupt (SR1-SR4)

 1 base address register (BP)

 3 system registers (SP, SR, PC)

 1 inner flag register (FR)

 8 extended registers (R8-R15)

 10 interrupt sources

 1 fast interrupt (FIQ)

 8 normal interrupts (IRQ)

 1 software interrupt (BRK)

 Support IRQ nested mode with priority

 6 addressing modes

 Register

 Immediate (I6/I16)

 Direct (A6/A16)

 Indirect + auto indexing address (DS indirect)

 Displacement (BP+IM6)

 Multiple indirect (PUSH/POP)

 16-bit multiplication

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 Integer / Fraction modes

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 16 V1.0 November 26, 2007

 16-levels inner product operation

 1 cycle MAC (multiplier/accumulator) unit

 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

 4 guard bits to avoid overflow

 Integer / Fraction modes

 Non-restoring division

 32-bit dividend and 16-bit divisor

 Need 16 continuous operations (DIVS, DIVQ) to generate correct quotient

 Effective-exponent detect operation

 Bit operations

 Support 4 operations: test, set, clear, inverse.

 Destination can be register or memory.

 2 address mode (direct, indirect) for memory access.

 16-bit shift operation

 1 cycle log-shifter

 Support 32-bit shift operation by combining 2 shift instructions.

1.4 Architecture

1.4.1 Architecture of unSP-1.0 and unSP-1.1

The design goal of unSP 1.0 and unSP 1.1 is to achieve high performance with low cost. It uses the

traditional multi-cycle architecture. The organization of unSP 1.0 and unSP 1.1 is illustrated as below. The

principal components are:

 The general registers (R1-R4) and the system registers (SP, BP, SR, PC) in the register bank.

 The data register (DR), which store the data.

 The address generator unit (AGU), which selects and holds all memory address and generate

sequential address when required.

 The shifter, which can shift or rotate one operand by any number of 4-bit.

 The ALU, which performs the arithmetic and logic functions required by current instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 17 V1.0 November 26, 2007

Figure 1.4

1.4.2 Architecture of unSP-1.2

The design goal of unSP 1.2 is to achieve high performance with low cost. It uses the traditional

multi-cycle architecture. The organization of unSP 1.2 is illustrated as below. The principal components

are:

 The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4

secondary bank registers (SR1-SR4), 4 system registers (SP, BP, SR, PC) and 1 flag register (FR) in

the register bank.

 The instruction register (IR), which store the current instruction fetched from data bus. The decoder

will generate all control signals for data path according to the instruction register.

 The data register (DR), which store the second word of current instruction if instruction length is 2

words.

 The address generator unit (AGU), which selects and holds all memory address and generate

sequential address when required.

 The shifter, which can shift or rotate one operand by any number of 4-bit.

 The ALU, which performs the arithmetic and logic functions required by current instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 18 V1.0 November 26, 2007

Figure 1.5

1.4.3 Peripheral Interface of unSP-1.2

 DMA Timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 19 V1.0 November 26, 2007

 DMAQ: DMA request, active high.

 DMACK: when CPU accept DMA request from DMAQ, it will reply DMACK signal and release

address, data bus, preb, web, rdb, wren signals after last memory access.

The longest delay without memory waiting cycle from DMAQ request to DMACK reply TDMA <= 3

clock cycles (max cycles for instruction to access memory)

 SLEEP Timing

 CK: CPU internal clock.

 SLEEP will stall the CPU clock at high and keep address, data, preb, rdb, web, wren at

origin value.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 20 V1.0 November 26, 2007

PD will stall the CPU clock at high and release the address, data bus, preb, rdb, web, wren signals.

 HDUMPROM Timing

Figure 1.9

HdumpROM is used to dump memory content from current address. If you want to dump all

memory content to data bus, you can use RESET and HdumpROM signal. After reset and keep

HdumpROM at high, the memory content from 0x000000 ~ 0x3FFFFF will be dumped to memory

bus contiguously every 2 cycles.

1.4.4 Architecture of unSP-1.3

The design goal of unSP 1.3 is to achieve high performance with low cost. It uses the traditional

multi-cycle architecture. The organization of unSP 1.3 is illustrated as below. The principal components

are:

 The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4

secondary bank registers (SR1-SR4), 6 system registers (SS, SP, MDS, BP, SR, PC) and 1 flag

register (FR) in the register bank.

 The instruction register (IR), which store the current instruction fetched from data bus. The decoder

will generate all control signals for data path according to the instruction register.

 The data register (DR), which store the second word of current instruction if instruction length is 2

words.

 The address generator unit (AGU), which selects and holds all memory address and generate

sequential address when required.

 The shifter, which can shift or rotate one operand by any number of 4-bits.

 The ALU, which performs the arithmetic and logic functions required by current instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 21 V1.0 November 26, 2007

Figure 1.10

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 22 V1.0 November 26, 2007

1.4.5 Architecture of unSP-2.0

unSP–2.0 is a 4-stage pipeline architecture. Its organization is illustrated as below. The principal

components are:

 The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4

secondary bank registers (SR1-SR4), 4 system registers (SP, BP, SR, PC), 8 extend registers

(R8~R15) and 1 flag register (FR) in the register bank.

 The instruction register (IR), which stores the current instruction fetched from instruction bus. The

decoder will generate all control signals for data path according to the instruction register.

 The parameter register (PR), which stores the second word of current instruction if instruction

length is 2 words.

 The instruction address generator unit (IAG), which selects and holds all instruction address

and generate sequential address when required.

 The data address generator unit (DAG), which generate and hold all data address.

 The Shifter, which can shift or rotate one operand by any number of 4-bit.

 The ALU, which performs the arithmetic and logic functions required by current instruction.

 The MAC, which performs the multiplication and accumulate functions required by current

instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 23 V1.0 November 26, 2007

1.4.6 Pipeline Feature of unSP-2.0

unSP 2.0 employs a simple 4-stage pipeline with the following pipeline stages:

 Fetch:

The instruction is fetched from memory and placed in the instruction registers.

 Decode:

The instruction is decoded and the data-path control signals prepared for the next cycle. If current

instruction needs to read data from memory, the access address will be generated and issued in

this stage.

 Memory Read:

Waiting state for memory read access. If current instruction needs performing shift operation, it will be

done in this stage.

 Execution / Memory Write:

All ALU operations, multiplication are executing in this stage and the result will be write back to

register or memory at the next cycle, if current instruction need to write data to memory, the access

address will be generated and issued in this stage.

At any one time, four different instructions may occupy each of these stages

Figure 1.12

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 24 V1.0 November 26, 2007

1.5 Register

1.5.1 Register of unSP-1.0 and unSP-1.1

unSP 1.0 and unSP 1.1 have eight 16-bit registers: Stack Pointer (SP), User Registers (R1, R2, R3, R4),

Based Pointer (BP), Status Register (SR) and Program Counter (PC). Please see Table 1.5 for details.

The concatenation of R3 and R4 forms a 32-bit register, MR, which is used as the destination register

for multiplication and inner-production. The Stack Pointer (SP) automatically increases (POP) or

decreases (PUSH) as the unSP performing push/pop, subroutine call or interrupt operations. The stack

size is limited to 64K, i.e., 0x000000 ~ 0x00FFFF. Since unSP 1.0 and unSP 1.1 are able to address

4M-word locations, additional 6 bits are needed to construct a 22-bit address from a 16-bit register for

fetching instructions (OP codes) and data accessing purposes. These 6 bits reside in the SR register,

which contains the Code Segment (CS) and the Data Segment (DS) fields. Therefore, both code

addresses and data addresses can be represented in 22 bits.

In unSP 1.0, the value in CS will not be changed by sequential execution and conditional branch when

crossing page boundaries. This behavior limits each code section cannot be larger than 64K words. Only

call instruction and interrupts can change CS. The DS will not be changed by pre-increment addressing,

post-increment addressing and post-decrement addressing modes. This behavior limits each data section

cannot be larger than 64K words. For example, suppose CS is 0x03 and PC is 0xFFFF, the next

instruction fetched by the unSP is located at CS:PC = 0x030000, not 0x040000.

In unSP 1.1, the content of total 22 bits formed by CS or DS and a register will be changed accordingly

when crossing page boundaries. Thus the 64K limitation is removed.

Table 1.5 unSP 1.0 and unSP 1.1 Registers

Register ID Name

0 (000) SP

1 (001) R1

2 (010) R2

3 (011) R3

4 (100) R4

5 (101) BP (R5)

6 (110) SR

7 (111) PC

1.5.2 Register of unSP–1.2

 Registers Bank

unSP 1.2 adds 4 registers (SR1~SR4) for interrupt service routines to reduce the push/pop effort.

User can use SECBANK On/Off instruction to switch register bank. If SECBANK mode is on, all

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 25 V1.0 November 26, 2007

access to R1~R4 will be redirected to SR1~SR4. The other registers, SP, BP, SR, PC and FR,

are not affected by the SECBANK On/Off instruction.

Figure 1.13

 Primary Bank

 Stack Pointer (SP)

 General Register (R1~R4)

 Base Pointer (BP)

 Status Register (SR)

 Program Counter (PC)

 Flag Register (FR)

 Secondary Bank

 Secondary Register (SR1~SR4)

 Status Register (SR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

DS N Z S C CS

 Conditional Flag

 N: Negative flag, denotes the 16th bit of ALU result.

 Z: Zero flag, denotes whether the ALU result is zero.

 S: Sign flag, denotes the MSB(18th) bit of ALU result.

 C: Carry flag, denotes the 17th bit of ALU result

 Data Segment (DS)

 Data segment can be used to access memory large than 64K words memory space

 Code Segment (CS)

 Code segment can be used to fetch instruction location large than 64K words memory

space

 Code segment and Data segment will be updated automatically when the target address

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 26 V1.0 November 26, 2007

crossing segment boundary.

 Flag Register (FR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

- AQ BNK FRA FIR SB FIQ IRQ INE PRI

 AQ: DIVS/DIVQ AQ flag, default is 0.

 BNK: Register bank, default is 0 (PRIBANK).

 FRA: Fraction mode, default is 0 (OFF).

 FIR: FIR move mode, default is 0 (FIR_MOVE ON).

 SB: Shift buffer/guard bits, default is 4’b0000.

 FIQ: FIQ Enable, default is 0 (Disable)

 IRQ: IRQ Enable, default is 0 (Disable)

 INE: IRQ nest mode, default is 0 (OFF)

 PRI: IRQ priority register, default is 4’b1000 after reset. If IRQ nest mode is On and any IRQ

occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service routine.

Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest behavior by

setting the priority register.

Priority: IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

Note: FIQ still has highest priority than any IRQ if FIQ is enabled.

For example:

 If PRI is 4’b1000, IRQ0-7 are enabled

 If PRI is 4’b0000, IRQ0-7 are disabled

 If IRQ3 occurred, PRI will be set to 0011. Only IRQ0-2 are enabled.

1.5.3 Register of unSP-1.3

 Registers Bank

As unSP 1.2, unSP 1.3 contains 4 registers (SR1~SR4) for interrupt service routine to reduce the

push/pop effort. User can use SECBANK On/Off instruction to switch register bank. If SECBANK

mode is on, all access to R1~R4 will be redirected to SR1~SR4. The other registers, SP, BP, SR,

PC, FR, SS and MDS, are not affected by the SECBANK On/Off instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 27 V1.0 November 26, 2007

Figure 1.14

 Primary Bank

 Stack Pointer (SP)

 General Register (R1~R4)

 Base Pointer (BP)

 Status Register (SR)

 Program Counter (PC)

 Flag Register (FR)

 Stack Segment Register (SS)

 Inner Product Operation Data Segment (MDS)

 Secondary Bank

 Secondary Register (SR1~SR4)

 Status Register (SR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

DS N Z S C CS

 Conditional Flag

 N: Negative flag, denotes the 16th bit of ALU result.

 Z: Zero flag, denotes whether the ALU result is zero.

 S: Sign flag, denotes the MSB(18th) bit of ALU result.

 C: Carry flag, denotes the 17th bit of ALU result

 Data Segment (DS)

 Data segment can be used to access memory large than 64K words memory space

 Code Segment (CS)

 Code segment can be used to fetch instruction location large than 64K words memory

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 28 V1.0 November 26, 2007

space

 Code segment and Data segment will be updated automatically when the target

address crossing segment boundary.

 Flag Register (FR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

AdE AQ BNK FRA FIR SB FIQ IRQ INE PRI

 Ade: Byte-mode instruction address alignment error.

 AQ: DIVS/DIVQ AQ flag, default is 0.

 BNK: Register bank, default is 0 (PRIBANK).

 FRA: Fraction mode, default is 0 (OFF).

 FIR: FIR MOVE mode, default is 0 (FIR Move On).

 SB: Shift buffer/guard bits, default is 4’b0000.

 FIQ: FIQ Enable, default is 0 (Disable)

 IRQ: IRQ Enable, default is 0 (Disable)

 INE: IRQ nest mode, default is 0 (OFF)

 PRI: IRQ priority register, default is 4’b1000 after reset. If IRQ nest mode is On and any

IRQ occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service

routine. Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest

behavior by setting the priority register.

Priority: IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

Note: FIQ still has highest priority than any IRQ if FIQ is enabled.

For example:

 If PRI is 4’b1000, IRQ0-7 are enabled

 If PRI is 4’b0000, IRQ0-7 are disabled

 If IRQ3 occurred, PRI will be set to 0011. Only IRQ0-2 are enabled.

 Stack Segment Register

The stack segment register (SS) is added to expand the size of stack. The size of SS is 6 bits. After reset,

all bits of SS are cleared to be zero. The behavior of following stack related operations are changed.

 PUSH RH, RL to [Rs]

The destination where RH ~ RL are pushed in a 22-bit address: {SS:Rs}2 1 ~ 0. That is, higher 6

bits in SS and lower 16 bits in Rs. After the push operation, {SS:Rs}2 1 ~ 0 is decremented by the

number of registers pushed.

 POP RL, RH from [Rs]

Increment {SS:Rs}2 1 ~ 0 by 1. Move the content at {SS:Rs}2 1 ~ 0 to Rx. Increment {SS:Rs}2 1 ` 0 by

1.Move the content at {SS:Rs}2 1 ~ 0 to RL +1. Repeat these operations (RH – RL + 1) times.

 The effective address of [BP+n] addressing mode

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 29 V1.0 November 26, 2007

The effective address is {SS:Rs}2 1 ~ 0 +n. Move the content at {SS:Rs}2 1 ~ 0 to Rx. Increment

{SS:Rs}2 1 ~ 0 by 1.Move the content at {SS:Rs}2 1 ~ 0 to RL +1. Repeat these operations (RH –

RL + 1) ti mes.

If SS is zero, the behaviors of these operations are the same as before.

 Inner Product Operation Data Segment Register (MDS)

F E D C B A 9 8 7 6 5 4 3 2 1 0

0 0 SEG of Rd 0 0 SEG of Rs

 Inner product operation data segment (MDS) are added to specify the page numbers of the

two sources, Rd and Rs.

 The data of the two sources can cross the page boundary. When doing the MULS operation, the Rd

and Rs will be added one by one. The carry signal will propagate to these MDS. This causes that

the MDS are added by one when the value of Rd and Rs change from 0xFFFF to 0x0000.

1.5.4 Registers of unSP- 2.0

 Normal mode

There are 3 system registers (SP, SR, PC), 4 general registers (R1~R4) and 1 flag registers (FR)

can be used in normal mode for user program operation.

 Registers Bank

4 secondary bank registers (SR1~SR4) are added for interrupt service routines to reduce the

push/pop effort. User can use SECBANK On/Off instruction to switch register bank. If SECBANK

mode is on, all access to R1~R4 will be redirected to SR1~SR4.

 Extend Registers

unSP 2.0 add 8 extend registers (R8~R15) to reduce register swapping effort while executing

complicity operations to improve performance, 8 extend instruction types are also added to do ALU

operation between extend registers and memory or original registers sets (R0~PC).

 Primary Bank

 Stack Pointer (SP)

 General Register (R1~R4)

 Base Pointer (BP)

 Status Register (SR)

 Program Counter (PC)

 Flag Register (FR)

 Extend Register (R8~R15)

 Secondary Bank

 Secondary Register (SR1~SR4)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 30 V1.0 November 26, 2007

Figure 1.15

 Status Register (SR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

DS N Z S C CS

 Conditional Flag

 N: Negative flag, denotes the 16th bit of ALU result.

 Z: Zero flag, denotes whether the ALU result is zero.

 S: Sign flag, denotes the MSB(18th) bit of ALU result.

 C: Carry flag, denotes the 17th bit of ALU result

 Data Segment (DS)

 Data segment can be used to access memory large than 64K words memory space

 Code Segment (CS)

 Code segment can be used to fetch instruction location large than 64K words memory

space

 Code segment and Data segment will be updated automatically when the target address

crossing segment boundary.

 Flag Register (FR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

- AQ BNK FRA FIR SB FIQ IRQ INE PRI

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 31 V1.0 November 26, 2007

 AQ: DIVS/DIVQ AQ flag, default is 0.

 BNK: Register bank, default is 0 (PRIBANK).

 FRA: Fraction mode, default is 0 (OFF).

 FIR: FIR MOVE mode, default is 0 (FIR Move On).

 SB: Shift buffer/Guard bits, default is 4’b0000.

 FIQ: FIQ Enable, default is 0 (Disable)

 IRQ: IRQ Enable, default is 0 (Disable)

 INE: IRQ nest mode, default is 0 (OFF)

 PRI: IRQ priority register, default is 4’b1000 after reset. If IRQ nest mode is On and any IRQ

occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service routine.

Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest behavior by

setting the priority register.

Priority: IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

Note: FIQ still has highest priority than any IRQ if FIQ is enabled.

For example:

 If PRI is 4’b1000, IRQ0-7 are enable

 If PRI is 4’b0000, IRQ0-7 are disable

 If IRQ3 occurred, PRI will be set to 0011. Only IRQ0-2 are enable.

1.6 Memory

1.6.1 Memory Map of unSP

The address map of unSP is divided by every 64K words (64K x 16 bits), called a page. The first page,

PAGE0, corresponds to A[21:16]=0. The 4M-word (4096K) memory can be divided into total of 64 pages

by A [21:16]=0x00 ~ 0x3F. The selection of page is defined by either a 6-bit Code Segment (CS) or 6-bit

Data Segment (DS) in Status Register (SR), depends on execution opcode fetching or data accessing

respectively. In memory mapping, PAGE0 is designed for storing data that is frequently accessed, e.g.

working memory or peripherals. The other pages (non-zero pages) are designed for storing program

codes or large chunk of data.

1.6.2 Memory Interface of unSP-1.2

The memory interface of unSP 1.2 is an asynchronous interface. Whenever the address transits, the

pre-charge (preb) signal will be pulled low 1 cycle to indicated the memory access and the read enable

signal (rdb) or write enable signal (web) will be pulled low at next cycle. The CPU may really need data at

the second or third cycle after the address transits, so the rdb may be kept 1 cycle or 2 cycles low while

reading memory. If the memory bus is not ready for CPU accessing, the memory ready signal (MRDY)

must be pulled low to stall CPU accessing before the clock rising edge of rdb or web access cycle.

Besides the rdb and web signals, there is an additional signal (wren) indicating the memory read/write

accessing within full memory access period. The detail timing diagrams are illustrated as below.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 32 V1.0 November 26, 2007

 Memory read timing without CPU waiting (2 cycles)

Figure 1.16

 Memory read timing without CPU waiting (3 cycles)

Figure 1.17

 Memory read timing with CPU waiting (2 cycles)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 33 V1.0 November 26, 2007

waiting cycle read cycle

CPU memory

Figure 1.18

 Memory write timing without CPU waiting

Figure 1.19

 Memory write cycle with CPU waiting

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 34 V1.0 November 26, 2007

waiting cycle write cycle

CPU memory

Figure 1.20

WEB: Memory write enable, changes at clock rising edge, active low.

RDB: Memory read enable, changes at clock rising edge, active low.

PREB: Memory pre-charge signal, changes at clock rising edge, active low.

WREN: Memory write signal, changes within full memory access period, active high.

MRDY: Memory bus ready signal, triggered by external device, must be stable before the clock rising

edge of read/write cycle.

CHOLD: CPU internal stall signal.

1.6.3 Memory Architecture of unSP-1.3

The memory interface of unSP 1.3 is an asynchronous interface. Two cycles are needed for CPU to

access memory without external memory wait. At the first cycle, the pre-charge (preb) signal will be pulled

low 1 cycle to indicate memory accessing and the read enable signal (rdb) or write enable signal (web)

will be pulled low at next cycle. If the memory bus need more cycles to prepare data, the memory bus

ready signal (MRDY) should be pulled low to stall CPU accessing before end of read or write cycle.

Besides the rdb and web signals, there is an additional signal (wren) indicating the memory read/write

accessing within full memory access period. ADDR_CHANGE_B indicates the changing of memory

address. Byte mode signals RAM_LBE and RAM_UBE enable the lower byte and upper byte access,

respectively. The detail timing diagrams are illustrated as below.

 Memory read timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 35 V1.0 November 26, 2007

 Memory write timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 36 V1.0 November 26, 2007

Figure 1.22

1.6.4 Memory Architecture of unSP-2.0

unSP 2.0 uses a modified Harvard architecture to accelerate memory access. The memory bus is

separated into 2 parts, instruction and data bus. Program executing address is issued at instruction bus

and data access address is issued at data bus.

The memory mapping of a real chip may be divided into several parts including internal memory, external

memory, I/O memory, … etc. A memory controller customized by the user is need to manage the

memory bus allocation.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 37 V1.0 November 26, 2007

Figure 1.23

1.6.5 Memory Interface of unSP–2.0

 Instruction Bus Read Timing

Figure 1.24

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 38 V1.0 November 26, 2007

 Data Bus Read Timing

Figure 1.25

 Data Bus Write Timing

Figure 1.26

 INST Bus and Data Bus Access Conflict Timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 39 V1.0 November 26, 2007

Figure 1.27

If INST Bus and Data Bus access the same memory space (IM/DM) concurrently, the Data Bus

will have higher priority than INST Bus. Thus only the Data Bus memory access will be accepted

and the memory content of DATA_ADDR is returned to the bus at next cycle.

The BUS_FIGHT signal will be pulled high to prevent the INST Bus from getting wrong data at

next cycle. If BUS_FIGHT signal is placed at high then the DATA Bus will release memory bus

and let INST Bus to get control of memory bus to prevent starvation condition.

CPU will fetch the data value on INST_DI and DATA_DI into internal registers at next clock

rising edge while INST_RDY and DATA_RDY are high, BUS_FIGHT is low. So the data input

must keep on bus until them being fetched into CPU.

 MULS Timing (FIR_MOV OFF, Rd, Rs index to separate memory space)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 40 V1.0 November 26, 2007

Figure 1.28

MULS operation will fetch data from INST Bus and DATA Bus concurrently to accelerating MAC
operation.

If the parameters array location indexed by Rd, Rs are placed at different memory ranges (IM/DM),
MULS

will have the best performance. Otherwise, bus conflict stall may be occurred and need 2 times of

executing cycles.

Cycles Count:

(No Bus Conflict, FIR_MOV

OFF): N+2 (No Bus Conflict,

FIR_MOV ON): 2N+1 (Bus

Conflict, FIR_MOV OFF):

2N+2 (Bus Conflict,

FIR_MOV ON): 3N

 MULS Timing (FIR_MOV ON, Rd, Rs index to separate memory space)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 41 V1.0 November 26, 2007

Figure 1.29

 MULS Timing (FIR_MOV OFF, Rd, Rs index to same memory space)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 42 V1.0 November 26, 2007

Figure 1.30

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 43 V1.0 November 26, 2007

 MULS Timing (FIR_MOV ON, Rd, Rs index to same memory space)

Figure 1.31

1.7 Addressing Modes

1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1

In unSP 1.0 and unSP 1.1, performing the same operation on differently addressed operand

may require different addressing modes. This indicates that the final destination address of

operand can be derived from register, content in register or offset of address. The destination

address formed by some calculations is called Effective Address (EA).

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 44 V1.0 November 26, 2007

The effective address will be divided into three types according to its number of bit. That is 6-bit, 16-bit

and 22-bit EA. The first two are offset of address. Only operand in current page can be addressed.

Moreover, the 22-bit EA means all operands in the whole range of memory can be addressed. The unSP

1.0 and unSP 1.1 supports six addressing modes, in which 16-bit data operand or the address operand of

transfer instruction can be accessed. In instruction set, most instructions can combine with these six

addressing mode to generate an instruction subset.

 Indexed Address

 Addressing space is limited to the memory in PAGE0 (0x000000-0x00FFFF) only

 PC Relatively

 Program jumps to an address related to PC conditionally or unconditionally. The jumping
range is limited to PC±63-word. The condition lies on NZSC flags in SR register.

 In unSP1.1, the jumping range is limited to CS:PC±63-word.

 Memory Absolute Address

Addressing space is limited to:

(1) First 64 words (0x00 ~ 0x3F) in PAGE0

(2) PAGE0 (0x000000~0x00FFFF)

(3) Calling a sub-program in code segment of 64-page absolute address

 Immediate

 The operand is IM6 (6-bit immediate value)

 The operand is IM16 (16-bit immediate value)

 Register Direct

The operand is in register directly

 Register Indirect

 Addressing space in memory is limited to data segment in PAGE0 or 64-page addresses. Its

offset depends on content in register and its page index on DS field of SR register.

 Addressing space is limited in PAGE0. The offset depends on the content of register.

 Using register indirect addressing mode in unSP1.1, the increment or decrement is the

arithmetical operation of 22-bit value, formed by DS register and target register. For instance,

suppose R1=0xFFFF. After executing D:[R1++], DS will be incremented by one and R1

becomes 0x0000.

1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0

 Register

Users can shift the source register (Rs) value first and then executing ALU operation with

destination register (Rd), place the result at destination register.

 Immediate

Users can do ALU operation between source register and a 6-bit or a 16-bit immediate value,
then

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 45 V1.0 November 26, 2007

place the result at destination register.
 Direct

 Users can do ALU operation between source register and the value at memory location

indexed by 6-bit or 16-bit operand, then place the result at destination register.

 Users can store register value to a memory location indexed by 6-bit or 16-bit operand.

 Indirect

 Users can do ALU operation between destination register and the value at memory location

indexed by source register, then place the result at destination register.

 Users can store destination register value to a memory location indexed by source register.

 The source register can be increased by 1 before ALU operation or increased/decreased by

1 after ALU operation.

 Users can use the “D:” indicator to access memory location larger than 64k words, if the “D:”

indicator is used, the high 6-bit of accessing address will use data segment (DS) value or be

zeroed.

 Multi-indirect

Users can push or pop multiple registers’ value to memory location indexed by stack pointer (SP)

 Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

1.7.3 9 addressing modes of unSP-1.3

 Register

Users can shift the source register (Rs) value first and then executing ALU operation with

destination register (Rd), place the result at destination register.

 Immediate

Users can do ALU operation between s ource register and a 6-bit or a 16-bit immediate value, then

place the result at destination register.

 Direct

 Users can do ALU operation between source register and the value at memory location
indexed by 6-bit or 16-bit operand, then place the result at destination register.

 Users can store register value to a memory location indexed by 6-bit or 16-bit operand.

 Indirect

 Users can do ALU operation between destination register and the value at memory location

indexed by source register, then place the result at destination register.

 Users can store destination register value to a memory location indexed by source register.

 The source register can be increased by 1 before ALU operation or increased/decreased by 1

after ALU operation.

 Users can use the “D:” indicator to access memory location larger than 64k words, if the “D:”

indicator is used, the high 6-bit of accessing address will use data segment (DS) value or be

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 46 V1.0 November 26, 2007

zeroed.

 Multi-indirect

Users can push or pop multiple registers’ value to memory location indexed by stack pointer (SP)

 Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

 Byte Register Indirect

 Users can do ALU operation between destination register and the value at memory location.

The first character B or W indicates accessing one byte or word. The effective byte address

(abbreviates to EBA) is {RX + 1:RX } 2 2 ~ 0 . The effective (word) address is EBA2 2 ~ 1 . If Rx0 is 0, low

byte in EBA22~1 is the target. If Rx0 is 1, high byte in EBA2 2 ~ 1 is the target.

 When accessing one word and the least significant bit of EBA is 1, that is, accessing across

word boundary, a software interrupt occurs and the AdE bit in FR register will be set. User

should take care to prevent such unaligned access takes place. If the software interrupt occurs

in the developing phase, user should debug their codes to remove unaligned access.

EA Memory Cell EBA

 0x24681 0x24680

0x24683

0x12340

 This addressing mode supports post increment, post increment and pre increment operations

on {RX + 1:RX } 2 2 ~ 0 . For post increment, post increment and pre increment operations, the bits in

{RX + 1:RX } 3 1 ~ 2 3 (that is, Rx+1 1 5 ~ 7) are not affected.

 Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

 Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

1.8 Interrupts

1.8.1 Interrupts of unSP-1.0 and unSP-1.1

unSP 1.0 and unSP 1.1 accept two types of external interrupts: Fast Interrupt (FIQ) and Interrupt

0x12341

0x12342

0x12343

0x24682

0x24685 0x24684

0x24687 0x24686

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 47 V1.0 November 26, 2007

(IRQ). Both interrupts can be freely turned on or off. In addition, unSP 1.0 and unSP 1.1 also

implements a software interrupt, BREAK. The interrupt vector mappings and priorities are depicted as

follow:

Figure 1.32

1.8.2 Interrupts of unSP-1.2

Interrupts are used to handle exception while program is running. unSP 1.2 support 10 interrupt sources

and 1 reset request. When an exception arises, unSP 1.2 completes the current instruction and then

departs from the current instruction sequence to handle the exception. The following sequence of

actions will be taken by processor before entering service routine.

 According the interrupt priorities to choose the highest priority event. The interrupt priority is

showed as below:

 RESET > BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

 If IRQ_NEST mode is off and program running in IRQ service routine, only REST, BREAK

and FIQ event can interrupt CPU.

 If IRQ_NEST mode is on and program running in IRQ service routine, besides RESET,

BREAK, FIQ event, the IRQ events with priority greater than PRI register also can interrupt

CPU.

 Fetch the relevant vector address list below into CPU.

Table 1.6

TEST[1:0] Interrupts

 00 01 10 11

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 48 V1.0 November 26, 2007

TEST[1:0] Interrupts

00 01 10 11

BREAK 0x00FFF5 0x00FFE5 0x007FF5 0x007FE5

FIQ 0x00FFF6 0x00FFE6 0x007FF6 0x007FE6

RESET 0x00FFF7 0x00FFE7 0x007FF7 0x007FE7

IRQ0 0x00FFF8 0x00FFE8 0x007FF8 0x007FE8

IRQ1 0x00FFF9 0x00FFE9 0x007FF9 0x007FE9

IRQ2 0x00FFFA 0x00FFEA 0x007FFA 0x007FEA

IRQ3 0x00FFFB 0x00FFEB 0x007FFB 0x007FEB

IRQ4 0x00FFFC 0x00FFEC 0x007FFC 0x007FEC

IRQ5 0x00FFFD 0x00FFED 0x007FFD 0x007FED

IRQ6 0x00FFFE 0x00FFEE 0x007FFE 0x007FEE

IRQ7 0x00FFFF 0x00FFEF 0x007FFF 0x007FEF

 If the interrupt event is IRQ and IRQ_NEST mode is on, unSP w ill save PC, SR and FR into memory

stack indexed by SP. If IRQ_NEST mode is off, only PC and SR will be saved.

 unSP 1.2 will change PC as the address fetched by vector address and fetching the first instruction.

 If the interrupt event is IRQ and IRQ_NEST mode is on, the PRI register will be changed as the

IRQS value.

The leaving sequence of service routine.

 If CPU is servicing IRQ interrupt and IRQ_NEST mode is on, the FR, SR and PC will be restored

from memory stack indexed by SP. If IRQ_NEST mode is off, only SR and PC will be restored. Since

the values in these registers are changed by the restore operation, CPU will return to the program

status before interrupt and keep executing.

The interrupt timing diagrams are illustrated as below:

 Reset timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 49 V1.0 November 26, 2007

Figure 1.33

 After CPU acknowledge reset signal, the first instruction will be fetched at 10th clock cycle.

Program reset vector must place at address 0xFFF7.

 Res: CPU reset signal, active low, Treset Pulse width must keep at least 2 clock cycles for

CPU to acknowledge reset pulse.

 fully_res: CPU internal reset signal.

Figure 1.34

 Leaving interrupt service routine

Figure 1.35

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 50 V1.0 November 26, 2007

 8 clock cycles needed from CPU accept interrupt signal to get the first instruction of

interrupt service routine.

 The longest delay from interrupt signal rising to acknowledge by CPU Tinterrupt <= 182

clock cycles (max instruction executing cycle)

Figure 1.36

restore IRQPRI[3:0]

Figure 1.37

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 51 V1.0 November 26, 2007

 Irqs[2:0]: External interrupt source select pins.

 RQPRI[3:0]: Interrupt priority register, user can change its value to allow specify range of

interrupts can be accepted by CPU. After entering interrupt service routine, the IRQPRI

register will be change to current IRQ number.

1.8.3 Interrupts of unSP-1.3

Interrupts are used to handle exception while program is running. unSP 1.3 support 10 interrupt

sources and 1 reset request. When an exception arises, CPU will complete the current instruction

and then departs from the current instruction sequence to handle the exception. The following

sequence of actions will be

taken by processor before entering service routine.

 According the interrupt priorities to choose the highest priority event. The interrupt priority is showed

as below

1. RESET > BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

2. IRQ_NEST mode is always on. When program is running in IRQ service routine, besides

RESET, BREAK, FIQ event, the IRQ events which priority greater than PRI register also can

interrupt CPU.

 Fetch the relevant vector address list below into CPU.

Table 1.7

Interrupts Vector Address

BREAK { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h5}

FIQ { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h6}

RESET { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h7}

IRQ0 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h0}

IRQ1 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h1}

IRQ2 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h2}

IRQ3 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h3}

IRQ4 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h4}

IRQ5 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h5}

IRQ6 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h6}

IRQ7 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h7}

 If the interrupt event is IRQ or FIQ, unSP1.3 will save PC, SR and FR into memory stack indexed by

{SS, SP}. For RESET and BREAK, only PC and SR will be saved.

 unSP 1.3 will change PC as the address fetched by vector address and fetching the first instruction.

 If the interrupt event is IRQ, the PRI register will be changed as the IRQ’s value.

 IRQ_ENABLE is turned off automatically when unSP 1.3 performing IRQ service routine. User can

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 52 V1.0 November 26, 2007

turn on IRQ_ENABLE in IRQ service routine to allow higher priority IRQ to interrupt it.

 unSP 1.3 can re-execute FIQ service routine when serving FIQ if FIQ_ENABLE is on. Both

FIQ_ENABLE and IRQ_ENABLE are turned off automatically when unSP1.3 performing FIQ service

routine.

 unSP1.3 will check the interrupt signals (FIQ/IRQ) at the last cycle of every instruction except:

 RA16 (Direct16 instruction with read) for semaphore implementation of the operating system

 RETI instruction

 MDS access instruction

The leaving sequence of service routine.

 If CPU is servicing IRQ or FIQ, the FR, SR, PC will be restored from memory stack indexed by SP

else only SR, PC will be restored. CPU will return to the program status before interrupt and keep

executing.

The interrupt timing diagrams are illustrated as below.

 Reset timing

Figure 1.38

 After CPU acknowledge reset signal, the first instruction will be fetched at 12th clock cycle.

 program reset vector must place at address 0xfff7

 RES : CPU reset signal, active high, TR E S E T pulse width must keep at least 2 clock cycles

 Entering interrupt service routine

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 53 V1.0 November 26, 2007

Figure 1.39

 10 clock cycles needed from CPU accept interrupt signal to get the first instruction of

interrupt service routine.

 The longest delay from interrupt signal rising to acknowledge by CPU TI NT ER R U PT <=

182 clock cycles (max instruction executing cycle)

 IRQS[2:0]: External interrupt source select pins.

 PRI[3:0]: Interrupt priority register, user can change its value to allow specify range of

interrupts can be accepted by CPU. After entering interrupt service routine, the

IRQPRI register will be change to current IRQ number.

 Leaving interrupt service routine

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 54 V1.0 November 26, 2007

Figure 1.40

1.8.4 Interrupts of unSP-2.0

unSP 2.0 supports 10 interrupt sources and 1 reset request. When an exception arises, unSP 2.0

completes the current instruction and then departs from the current instruction sequence to handle

the exception. The following sequence of actions will be taken by processor before entering service

routine.

 According the interrupt priorities to choose the highest priority event. The interrupt priority is shown as

below:

 RESET> BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

 If IRQ_NEST mode is off and program running in IRQ service routine, only RESET BREAK,

FIQ event can interrupt CPU.

 If IRQ_NEST mode is on and program running in IRQ service routine, besides RESET,

BREAK, FIQ event, the IRQ events which priority greater than PRI register also can

interrupt CPU.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 55 V1.0 November 26, 2007

 Fetch the relevant vector address list below into CPU.

Table 1.8
 TEST[1:0]

Interru pts
00 01 10 11

BREAK 0x00FFF5 0x00FFE5 0x007FF5 0x007FE5

FIQ 0x00FFF6 0x00FFE6 0x007FF6 0x007FE6

RESET 0x00FFF7 0x00FFE7 0x007FF7 0x007FE7

IRQ0 0x00FFF8 0x00FFE8 0x007FF8 0x007FE8

IRQ1 0x00FFF9 0x00FFE9 0x007FF9 0x007FE9

IRQ2 0x00FFFA 0x00FFEA 0x007FFA 0x007FEA

IRQ3 0x00FFFB 0x00FFEB 0x007FFB 0x007FEB

IRQ4 0x00FFFC 0x00FFEC 0x007FFC 0x007FEC

IRQ5 0x00FFFD 0x00FFED 0x007FFD 0x007FED

IRQ6 0x00FFFE 0x00FFEE 0x007FFE 0x007FEE

IRQ7 0x00FFFF 0x00FFEF 0x007FFF 0x007FEF

 If the interrupt event is IRQ and IRQ_NEST mode is on, unSP2.0 will save PC, SR, FR into memory

stack indexed by SP else only PC, SR will be saved.

 unSP 2.0 will change PC as the address fetched by vector address and fetching the first instruction.

 If the interrupt event is IRQ and IRQ_NEST mode is on, the PRI register will be changed to current

IRQ number.

The leaving sequence of service routine.

 If CPU is servicing IRQ interrupt and IRQ_NEST mode is on, the FR, SR, PC will be restored from

memory stack indexed by SP else only SR, PC will be restored, and CPU will return to the program

status before interrupt and keep executing.

The interrupt timing diagrams are illustrated as below:

 RESET Timing

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 56 V1.0 November 26, 2007

Figure 1.41

TR E S E T _ B : External reset signal, active low, TRE S E T _ B pulse width must keep at least 2 clock cycles for
CPU

to acknowledge reset pulse.

TE n t e r : Reset timing, 4 cycles needed from CPU accept reset signal to fetch the first instruction.

 Break Timing

Figure 1.42

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 57 V1.0 November 26, 2007

Tenter : Interrupt entering time, 4 cycles needed from CPU accept interrupt request to fetch

the first instruction.

 Entering interrupt service routine

Figure 1.43

Trespose: Interrupt Response Time, Trespose <= 50 clock cycles (max instruction executing cycles,

MULS) Tenter : Interrupt entering time, 4 cycles needed from CPU accept interrupt request to

fetch the first instruction.

 Leaving interrupt service routine

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 58 V1.0 November 26, 2007

Figure 1.44

 Entering interrupt service routine

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 59 V1.0 November 26, 2007

Figure 1.45

Trespose: Interrupt response time, Trespose <= 50 clock cycles (max instruction executing cycles,

MULS). Tenter : Interrupt entering time, 5 cycles needed from CPU accept interrupt request

to fetch the first instruction.

IRQS[2:0]: External triggered IRQ number.

IRQPRI[3:0]: Internal interrupt priority register, user can change its value in FR to disable

interrupts with lower interrupt priority. After entering interrupt service routine, the IRQPRI

register will be changed to current IRQ number.

 Leaving interrupt service routine

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 60 V1.0 November 26, 2007

Figure 1.46

1.9 Data Types

The data structure of unSP is a 16-bit data type, called a word. A 6-bit constant data type in

machine code is for quick access to the first 64 words (0x000000 ~ 0x00003F) in PAGE0. The

6-bit constant also serves as an offset to branch instructions or pointer type (via Base Pointer,

BP) data access. The 22-bit constant data type in machine code is for referencing an address in

memory. There is no 8-bit data type in unSP.

1.10 ALU Operation Types

The ALU operation types and its effect on the flags in SR (Status Register) are listed in Table 1.9.

Table 1.9 ALU opcode definition

Operation Type Operation N Z S C

Add a + b ~ ~ ~ ~

Add with carry a + b + C ~ ~ ~ ~

Subtract a + ~ b + 1 ~ ~ ~ ~

Subtract with carry a + ~ b + C ~ ~ ~ ~

Compare a + ~ b + 1 ~ ~ ~ ~

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 61 V1.0 November 26, 2007

Operation Type Operation N Z S C

Negative ~ b + 1 ~ ~ - -

Exclusive OR a XOR b ~ ~ - -

OR a OR b ~ ~ - -

AND a AND b ~ ~ - -

Test TEST a, b ~ ~ - -

Load from memory or register to

Register
a = b ~ ~ - -

Store from register to memory a = b - - - -

N, Z, S, C: Negative, Zero, Sign, and Carry.

The flags are defined as follows.

Flag N is 1: if the MSB (most significant bit) of result is 1.

Flag N is 0: if the MSB (most significant bit) of result is 0.

Flag Z is 1: if the result is 0.

Flag Z is 0: if the result is not 0.

Flag S is 1: if the result is negative (for two's complement).

Flag S is 0: if the result is not negative.

Flag C is 1: if carry occurs.

Flag C is 0: if no carry occurs.

For unsigned operations, the largest number for 16-bit representation is 0xFFFF (65535). If the results are

greater than 0xFFFF (65535), flag C is set. For two's complement operations, the largest number is

0x7FFF (32767) and the smallest is 0x8000 (-32768). If the computation result is less than zero, flag S

is set. However, the result could be larger than 0x7FFF or smaller than 0x8000. For example, 0x7FFF

(32767) + 0x7FFF (32767) = 0xFFFE (65534). The result is positive (S=0) and no carry is set (C=0). In

this case, the N flag is set (N=1 since the MSB of the result is 1). Overflow occurs if flag N and S are

different, either S=0, N=1 or vice versa. In operation, the flags will not be changed if the destination

register is PC.

1.11 Conditional Branches

Conditional branches consult flags. Four bits (Opcode, bits 15:12) in the branch type instructions

are defined in Table 1.10.

Table 1.10 OP codes in conditional branch operations

Syntax Description Branch

JCC Carry clear C==0

JB Below (unsigned) C==0

JNAE Not above and equal (unsigned) C==0

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 62 V1.0 November 26, 2007

Syntax Description Branch

JCS Carry set C==1

JNB Not below (unsigned) C==1

JAE Above and equal (unsigned) C==1

JSC Sign clear S==0

JGE Great and equal (signed) S==0

JNL Not less (signed) S==0

JSS Sign set S==1

JNGE Not great than (signed) S==1

JL Less (signed) S==1

JNE Not equal Z==0

JNZ Not zero Z==0

JZ Zero Z==1

JE Equal Z==1

JPL Plus N==0

JMI Minus N==1

JBE Below and equal (unsigned) Not (Z==0 and C==1)

JNA Not above (unsigned) Not (Z==0 and C==1)

JNBE Not below and equal (unsigned) Z==0 and C==1

JA Above (unsigned) Z==0 and C==1

JLE Less and equal (signed) Not (Z==0 and S==0)

JNG Not great (signed) Not (Z==0 and S==0)

JNLE Not less and equal (signed) Z==0 and S==0

JG Great (signed) Z==0 and S==0

JVC Not overflow (signed) N == S

JVS Overflow (signed) N != S

JMP Unconditional branch Always

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 63 V1.0 November 26, 2007

2 unSP- 1.1 Instruction Set

2.1 unSP Instructions Classification

2.1.1 Notation

The following notations will be effective in the following chapters of instruction set description.

Rd Destination register or pointer of destination memory

Rs Source register or pointer of source memory

X, Y Source operation units. X, Y will be shown as different object according to

addressing mode.

Rx ~ Ry User registers; x and y are the serial number

MR A 32-bit multiplicative result register composed of R3 and R4 (R4 is high word

group, R3 is low word group)

Sign of ALU operation

NZSC Flags for ALU operation

+, -, Addition, subtraction, multiplication

&, |, ^, ~ Logical AND, logical OR, logical XOR, logical NOT

Data transfer

SFT Shift type

Nn The number of shift bits

IM6, IM16 6-bit immediate value, 16-bit immediate value

A6, A16 bit 0–5 of an address expression, bit 0–15 of an address expression

PC, SP, BP Program counter register, stack pointer register, base pointer register

SR Status register

CS, DS Code segment and data segment in SR

Offset Bit 0–15 offset of a 22-bit address expression

Segment Bit 16–21 of a 22-bit address expression, which is the page number

{ } Optional

[] Sign of register indirect addressing

D Sign of non-zero pages addressing

++, -- Sign of increasing or decreasing a word for pointer

Ss Signed to signed number

Us Unsigned to singed number

If cond = 1 If the result of condition for NZSC is true

Label, sub_prog Label of program and sub-program

CPUCLK CPU clock

N The number of items for inner product signed by MULS

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 64 V1.0 November 26, 2007

FIR Finite Impulse Response filter

// Commentary line

2.1.2 Instruction Classification

There are 41 instructions in unSP all of which can be divided into four types. See Table 2.1.

Table 2.1 unSP Instruction Classifications

Type Instruction influx Operations

LOAD, STORE X R d , R d X
Data Transfer

PUSH, POP Rx~Ry[Rs], [Rs]Rx~Ry

ADD, SUB (XY) Rd

ADC, SBC (X Y C) Rd

NEG, CMP ~ X + 1 R d , X–Y, NZSC will be affected

MUL R d R s M R

MULS MR + [R d] [R s] M R

AND, OR, XOR X & Y R d , X | Y R d , X ^ Y R d

TEST X&Y, only NZSC will be affected

ALU

Operation

SFT Rd # (Rs SFT nn) Rd

BREAK
P C [S P] , SR[SP+1] ,

[0xFFF5]PC, 0 CS

CALL label
P C [S P] , SR[SP+1] ,

(A22)1 5 ~ 0 PC, (A22)2 1 ~ 1 6CS

RETF, RETI [S P] S R , [SP–1]PC

Jcond,

JMP label

If cond=1, PC±IM6;

PC±IM6

Transfer

Control

GOTO label
unSP1.0: A 1 6 P C

unSP1.1: (A22)1 5 ~ 0 PC, (A22)2 1 ~ 1 6CS

FIR_MOV ON/OFF Enable/disable automatic data movement for FIR filter

FIQ ON/OFF Enable/disable FIQ

IRQ ON/OFF Enable/disable IRQ

INT Set flags to enable/disable FIQ and IRQ

Miscellaneous

NOP Implemented as an unconditional jump to next address

2.2 unSP Instruction Format

The assembly instructions of unSP will be translated into five types of machine codes by the assembler.

Some terms should be defined before we describe these instructions. See Table 2.2.

Table 2.2 Fields in Instruction Format

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 65 V1.0 November 26, 2007

Field in instruction Area symbol Remark

OP
Used for appointing the function, addressing mode and operation

Operation type
type of instructions.

Operand OPD
Operand can be divided into register, immediate and offset of

address by different operation type or addressing mode.

Operand expansion
OPDE

Operand can be expanded into 16-bit immediate and 16-bit offset

of address by different addressing modes.

Conditional code COND Various conditional codes in jump instructions.

Flags FL
It is used to label the symbols of operation attribute(D, @, S, W,

SFT, F, I).

Range RG
It is used to label fields of operation range (SIZE—Serials,

nn—Shift)

Five instruction formats mentioned above will be listed in Table 2.3. Each field in every instruction will

show different form according to different operation and addressing mode.

Table 2.3 unSP Instruction Format

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 66 V1.0 November 26, 2007

Therefore, we can find that the number of operand in unSP instruction can be 0, 1, 2 or 3. The location

of operand depends on the addressing mode. We can take 16-bit word group as a unit and arrange

instruction for single word group (short instruction) and double word group (long instruction).

2.3 unSP-1.1 Instruction Set

Each instruction subset of instruction set will be listed one by one by the sequence of instruction type.

2.3.1 Data-Transfer Instructions

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 67 V1.0 November 26, 2007

Note: The x in word group denotes the data bit of “0” or “1”. They can be fields listed in Table 2.3

except the operand field. The description for operand and addressing mode will be dominated but the

other field ignored briefly. The same rule can be applied for the following tables.

Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X

shows different form according to addressing mode.

IM6, IM16: X is a 6-bit or 16-bit immediate. IM6 will be expanded to16 bits filled with zeros first, and

then stored to Rd.

[BP+IM6]: X is the memory in PAGE0 addressed as (BP+IM6).

A6,A16: X is the memory in the PAGE0 addressed as (0x00~0x3F) or (0x0000~0xFFFF)

R: X may be register R1~R4, BP, SP or SR.

[R]: X is the memory pointed by offset in Rs. Rs may point data segment in PAGE0 as ‘D’ is ignored or

in non-PAGE0 as ‘D’ is not ignored and its page index depends on DS in SR register. Rs can be

increased or decreased in a word before or after operation. This is only a group of instruction that

either addressed as PAGE0 or non-PAGE0 in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may

also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table and all flags will be unresponsive if Rd is PC.

Examples: R1 = 0x28;

R2 = 0x2400;

R3 = [BP+0x08];

R4 = [0x30];

BP = [0x2480]; SR =

R2;

PC = D:[R1++];

// IM6

// IM16

// [BP+IM6]

// A6

// A16

// R

// [R], Write to PC, Cycles:7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 68 V1.0 November 26, 2007

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode.

[BP+IM6]: X is the memory in PAGE0 addressed as (BP+IM6).

A6,A16: X is the memory in PAGE0 addressed as (0x00-0x3F) or (0x0000-0xFFFF)

[R]: X is the memory pointed by offset in Rs. Rs may point data segment in PAGE0 as ‘D’ is ignored or

in non-PAGE0 as ‘D’ is not ignored and its page index depends on DS in SR register. Rs can be

increased or decreased in a word before or after operation. This is only a group of instruction that

either addressed as PAGE0 or non-PAGE0 in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may

also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table if Rd is PC.

Example: [BP+0x08] = R3; // Write to [BP+IM6]

[0x30] = R4; // Write to [A6]

[0x2480] = BP; // Write to [A16]

D:[R4++] = PC; // Read from PC, Cycles 7

Description: Push a number (number n=1~7, SIZE) of registers Rx-Ry (Rx~RySP) to memory

pointed by Rs decreasingly.

Example: PUSH R3, PC to [SP]; // Push R3 through PC (R7) to SP

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 69 V1.0 November 26, 2007

Note: PUSH R3, PC to [SP] is equivalent to PUSH PC, R3 to [SP]

Description: Copy a set of memory pointed by Rs consecutively to a set of register Rx-Ry (Rx~Ry

SP) where n=1~7. It is also equivalent to RETF/RETI when Rx~Ry is SR~PC.

Note:

1. When SR is not in the set of Rx ~ Ry, only N and Z flags will be determined by Ry.

2. When SR is in the set of register Rx~Ry, NZSC flags will be changed. However, N and Z will be

eventually determined by Ry.

Example: POP R4, PC from [SP]; // Pop R4 through PC from SP

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 70 V1.0 November 26, 2007

Note: POP R4, PC from [SP] is equivalent to POP PC, R4 from [SP]

2.3.2 Arithmetic/Logical-Operation Instructions

This is Arithmetic/Logical-Operation Instructions that carry out the operation as RD = X # Y. X and Y will

show different meanings according to the addressing mode. Because the same explanation for X, Y and

the description for Rs, Rd will be involved in instruction they will be listed in Table 2.4.

Table 2.4 The meanings for X, Y in operation as Rd = X # Y

Addressing Mode X, Y

X is Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and
IM6

then be operated with X.

IM16 X is Rs, Y is IM16

[BP+IM6] X is Rd, Y is the memory in PAGE0 addressed as (BP+IM6)

[A6] X is Rd, Y is the memory in PAGE0 addressed as (0x00~0x3F)

[A16] X is Rs. Y is the memory in PAGE0 addressed as (0x0000~0xFFFF)

R X is Rd, Y is Rs.

[R]

X is Rd, Y is the memory address pointed by the offset in Rs. Rs may point

data segment in PAGE0 as ‘D’ is ignored or in non-PAGE0 as ‘D’ is not

ignored and its page index depends on DS in SR register. Rs can be

increased or decreased in a word before or after operation. This is only a

group of instruction that either addressed as PAGE0 or non-PAGE0 in

unSP instruction set.

Note: Rs may be R1~R4, BP, SP, SR and PC. Rd may be R1~R4, BP, SP and SR if the addressing mode

is [BP+IM6]. Rd may also be PC besides [BP+IM6] addressing mode. Cycles will be longer alternatively in

above instruction table and all flags will be unresponsive if Rd is PC.

For shift operation instructions:

 FIQ, IRQ and user routine has their own shift buffers. User does not need to save shift buffer for

interrupt routines.

 Shift buffer values are unknown after multiplication or filter operations. User should make no

assumptions to its value after the operations.

 Carry flag only couple with ALU operation, not shift operation.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 71 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd =

X+Y. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 += 0x28; // IM6

R2 = R1 + 0x2400; // IM16

R3 += [BP+0x08]; // [BP+IM6]

R4 += [0x30]; // [A6]

BP = R4 + [0x2480]; // [A16]

SR += R2; // R

PC += D:[BP++]; // Write to PC, Cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 72 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 = 0x28, Carry;

R2 = R1 + 0x2400, Carry;

R3 += [BP+0x08], Carry;

R4 += [0x30];

BP = R4 + [0x2480], Carry; SR +=

R2, Carry;

PC += D:[BP++], Carry;

// R1 = R1 + IM6 + C

// R2 = R1 + IM16 + C

// R3 = R3 + [BP+IM6] + C // R4 = R4 + [A6] + C

// BP = R4 + [A16] + C // SR = SR + R2 + C

// Write to PC, Cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 73 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction without carry in arithmetical operation, i.e.

Rd = X - Y. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 -= 0x28; // R1 = R1 – IM6

R2 = R1 - 0x2400; // R2 = R1 – IM16

R3 -= [BP+0x08]; // R3 = R3 – [BP+IM6]

R4 -= [0x30]; // R4 = R4 – [A6]

BP = R4 - [0x2480]; // BP = R4 – [A16]

SR -= R2; // SR = SR – R2

PC -= D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 74 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction with carry in arithmetical

operation, i.e. Rd = X – Y – C = X + (~Y) + C. X, Y will have different meanings according to the

addressing mode. See Table 2.4.

Example: R1 -= 0x20, Carry; // R1 = R1 – IM6 - C

R2 = R1 - 0x2400, Carry; // R2 = R1 – IM16 - C

R3 -= [BP+0x08], Carry; // R3 = R3 – [BP+IM6] - C

R4 -= [0x30], Carry; // R4 = R4 – [A6] - C

BP = R4 - [0x2480], Carry; // BP = R4 – [A16] - C

SR -= R2, Carry; // SR = SR – R2 - C

PC -= D:[BP++], Carry; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 75 V1.0 November 26, 2007

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd =

-X = ~X+1. The meaning of X will be described as follow according to the different addressing modes.

IM6, IM16: X is IM6 or IM16. IM6 will be expanded to 16 bit filled with zeros first, and then carry out

negation.

[BP+IM6]: X is the memory in PAGE0 addressed as (BP+IM6).

[A6], [A16]: X is the memory in PAGE0 addressed as (0x00~0x3F) or (0x0000~0xFFFF)

R: X may be R1~BP(R5), SP, SR.

[R]: X is the memory pointed by offset in Rs. Rs may points to data segment in PAGE0 as ‘D’ is

ignored or in non-PAGE0 as ‘D’ is not ignored and its page index depends on DS in SR register. Rs

can be increased or decreased in a word before or after operation. This is only a group of instruction

that either addressed as PAGE0 or non-PAGE0 in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may

also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table and all flags will be unresponsive if Rd is PC.

Example: R1 = -0x27; // R1 = - IM6

R3 = -[BP+0x08]; // R3 = - [BP+IM6]

R4 = -[0x30]; // R4 = - [A6]

BP = -[0x2480]; // BP = - [A16]

SR = -R2; // SR = - R2

PC = -D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 76 V1.0 November 26, 2007

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X -

Y. But its result will not be stored and only affect NZSC flags. X, Y will have different meanings

according to the addressing mode. See Table 2.4.

Example: CMP R1, 0x27; CMP R3,

[BP+0x08];

 CMP R4, [0x30];

 CMP BP, [0x2480];

 CMP SR, R2;
CMP PC, D:[BP++];

// Compare R1, IM6

// Compare R3, [BP+IM6]

// Compare R4, [A6]

// Compare BP, [A16]

// Compare SR, R2

// Compare with PC, cycles: 7

Description: The group of instruction will be executed for multiplication in arithmetical operation, i.e.

MR=Rd*Rs. And “ss” will indicate that two of word data in Rd and Rs are all signed, “us” mean that the

word data Rd is unsigned and that in Rs is signed. Rd, Rs may be register R1~R4, BP. The result is

put into MR, which is a virtual 32-bit register combined from R4 and R3. R4 contains the higher 16 bits

of MR. R3 contains the lower 16 bits of MR.

Example: MR = R2 * R1; // Two signed values

MR = R1 * R2, us; // R1 is unsigned and R2 is signed

MR = R3 * R4, ss; // Two signed values

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 77 V1.0 November 26, 2007

Description: The group of instruction will be executed in sum of register multiplication. Its result will

be stored into MR register. And “ss” will indicate that two word data pointed by the content in Rd and

Rs are all signed, “us” means that the word data pointed by Rd is unsigned and that pointed by Rs is

signed. The items of operation will be shown by “n” which can be 1~16. 1 is default. See the following

chart. Among which Rd and Rs may be R1, R2, and BP. (Note: To avoid misusing, Rd and Rs cannot

be SP, SR, PC, R3 and R4; moreover, Rd and Rs cannot be set as the same register).

Figure 2.1 Inner Multiplication Operation chart

Example: MR = [R2] * [R1], 8; // The inner multiplication of two signed

MR = [R1] * [R2], us, 2; // R1 is unsigned, R2 is signed. MR = [R2]

* [BP], ss, 4; // Two signed value.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 78 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical AND operation, i.e. Rd = X & Y. The X

and Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 &= 0x2F;

R3 &= [BP+0x08];

R4 &= [0x30];

BP = R2 & [0x2480];

SR &= R2;

PC &= D:[BP++];

// R1 = R1 & IM6

// R3 = R3 & [BP+IM6]

// R4 = R4 & [A6]

// BP = R2 & [A16]

// SR = SR & R2

// Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 79 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 |= 0x2F;

R3 |= [BP+0x08];

R4 |= [0x30];

BP = R2 | [0x2480];

SR |= R2;

PC |= D:[BP++];

// R1 = R1 | IM6

// R3 = R3 | [BP+IM6]

// R4 = R4 | [A6]

// BP = R2 | [A16]

// SR = SR | R2

// Write to PC, cycles: 7

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X ^ Y.

The X, Y will have different meanings according to the addressing mode. See Table 2.4.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 80 V1.0 November 26, 2007

Example: R1 ^= 0x2F; // R1 = R1 ^ IM6

R3 ^= [BP+0x08]; // R3 = R3 ^ [BP+IM6]

R4 ^= [0x30]; // R4 = R4 ^ [A6]

BP = R2 ^ [0x2480]; // BP = R2 ^ [A16]

SR ^= R2; // SR = SR ^ R2

PC ^= D:[BP++]; // Write to PC, cycles: 7

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However,

its result will not be stored and it only affects NZ flags. The X and Y will have different meanings

according to the addressing mode. See Table 2.4.

Example: TEST R1, 0x27; // TEST R1 and IM6

TEST R3, [BP+0x08]; // TEST R3 and [BP+IM6]

TEST R4, [0x30]; // TEST R4 and [A6]

TEST BP, [0x2480]; // TEST BP and [A16]

TEST SR, R2; // TEST SR and R2

TEST PC, D:[BP++]; // TEST PC and D:[BP++], cycles: 7

ASR-ALU Register Arithmetic-Shift-Right and Arithmetic/Logical Operation

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 81 V1.0 November 26, 2007

Description: These group of instruction will be executed in arithmetic operation with logical shift right

where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and logical

operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR) and the result is stored to Rd.

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

ASR: (Arithmetic Shift Right with MSB, which fits for signed)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ASR 2; // SR = SR | (R2 / 22)

SP += R1 ASR 4, Carry; // SP = SP + (R1 / 24) + C

R2 = R1 ASR 2; // R2 = R1 / 22

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 82 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic and logical operations with logical

shift left where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and

logical operation with Rd (Rd, Rs ~ SP, PC; Rs ~ SR), and then the result is stored to Rd. See the

following chart.

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

LSL: (Logic Shift Left)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 LSL 2; // SR = SR | (R2 << 2)

SP += R1 LSL 4, Carry; // SP = SP + (R1 << 4) + C

R2 = R1 LSL 2; // R2 = R1 << 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 83 V1.0 November 26, 2007

Description: The group of instruction will be executed with logical shift right where nn is number of

shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and logical operations with Rd (Rd, Rs ~

SP, PC; Rs ~ SR). Then, the result is stored to Rd. See the following chart.

Before shifting op

SB is the shift buffer. Suppose nn=3, then after shift op of

LSR: (Logic Shift Right)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 LSR 2; // SR = SR | (R2 >> 2)

SP += R1 LSR 4, Carry; // SP = SP + (R1 >> 4) + C

R2 = R1 LSR 2; // R2 = R1 >> 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 84 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic and logical operations with rotate

shift left where nn is number of position shift and ranged in [1~4]. Or Rs carries out arithmetic and

logical operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR) then the result is stored to Rd. See the

following chart.

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of:

ROL: (Rotate Left with SB)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROL 2; // SR = SR | (R2 ROL 2)

SP += R1 ROL 4, Carry; // SP = SP + (R1 ROL 4) + C

R2 = R1 ROL 2; // R2 = R1 ROL 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 85 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic and logical operations with rotate

shift right where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and

logical operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR). After that, the result is stored to Rd. As

following chart shows.

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

ROR: (Rotate Right with SB)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROR 2; // SR = SR | (R2 ROR 2)

SP += R1 ROR 4, Carry; // SP = SP + (R1 ROR 4) + C

R2 = R1 ROR 2; // R2 = R1 ROR 2

2.3.3 Transfer-Control Instructions

Description: Generate a software interrupt. CPU will jump to interrupt vector [0x00FFF5] to execute

interrupt service routine.

Example: BREAK; // Generate a software interrupt

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 86 V1.0 November 26, 2007

Description: Call a sub-program. Label can be anywhere in the memory space. Both PC and SR are

pushed to stack automatically before calling the sub-program. CPU then load CS of SR with CS6 and

PC with A16 to jump to Label.

Example: CALL sub1; // CALL sub1

[result] = R1; // Store the return value of sub1

…

Sub1: .PROC

PUSH BP to [SP];

BP = SP + 1;

R2 = [BP+3]; // Parameter 1

R3 = [BP+4]; // Parameter 2
 …..

R1 = 0; // Return

value RETF;

.ENDP

Description: A group of conditional and unconditional short jump instruction to local label. Each flag in

SR will be checked as routine jump condition. If condition is met, PC will jump to related addresses

w i th in63 words. If the condition is not true, PC will go to the position of next instruction. See

Conditional Branch Table for details.

User can use “S”+Jcond (ex. SJG Label) format. Such command will become a smart branch that

assembler will pick up least code size to encode this branch for backward jump (depending on the

distance of this instruction’s address with PC and encode it with short or long jump).

Table 2.5 Conditional branch operations

 Cond OP Codes Symbol Operand Type Description Flags

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 87 V1.0 November 26, 2007

0000 JCC — Carry clear C=0

0000 JB Unsigned Below C=0

0000 JNAE Unsigned Not above and equal C=0

0001 JCS — Carry Set C=1

0001 JNB Unsigned Not below C=1

0001 JAE Unsigned Above and equal C=1

0010 JSC — Sign clear S=0

0010 JGE Signed Great and equal S=0

0010 JNL Signed Not less S=0

0011 JSS — Sign set S=1

0011 JNGE Signed Not great than S=1

0011 JL Signed Less S=1

0100 JNE — Not equal Z=0

0100 JNZ — Not zero Z=0

0101 JZ — Zero Z=1

0101 JE — Equal Z=1

0110 JPL — Plus N=0

0111 JMI — Minus N=1

1000 JBE Unsigned Below and equal Not (Z=0 and C=1)

1000 JNA Unsigned Not above Not (Z=0 and C=1)

1001 JNBE Unsigned Not below and equal Z=0 and C=1

1001 JA Unsigned Above Z=0 and C=1

1010 JLE Signed Less and equal Not (Z=0 and S=0)

1010 JNG Signed Not great Not (Z=0 and S=0)

1011 JNLE Signed Not less and equal Z=0 and S=0

1011 JG Signed Great Z=0 and S=0

1100 JVC Signed Not overflow N=S

1101 JVS Signed Overflow N ! =S

1110 JMP Unconditional jump

Example: CMP R1, R2;

JNE label1; // Jump to label1 when not equal

JMP labe2; // Unconditional jump to label2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 88 V1.0 November 26, 2007

Description: RETF will pop SR and PC from stack and return from subroutine. Note that the SR and

PC are popped back after RETF. Therefore, they are the same with those before calling sub-programs.

Example: sub1: .PROC

… …

RETF; // Return from sub1

ENDP

Description: RETI will pop SR and PC from stack and then return from interrupt service routine. Note

that the SR and PC are popped back after RETI. Therefore, they are the same as those of before

interrupt responses.

Example: .TEXT

.PUBLIC _IRQ1

_IRQ1:

… …

RETI; // Return from IRQ1

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 89 V1.0 November 26, 2007

Description: Going to user’s specified address unconditionally. In unSP 1.0, Target address is limited

to the 64K word of current page. In unSP1.1, the whole 4M word addressing space is allowable.

Example: GOTO loop; // Jump to loop unconditionally

2.3.4 Miscellaneous Instructions

Description: Enable automatic data movement for FIR operations. It affects the behavior of FIR, which

is global. Hence, use it in interrupt with care.

Example: _IRQ1:

PUSH R1, R4 to [SP];

CALL F_IRQ1_Service_10kHz; // Sample, FIR, output

POP R1, R4 from [SP];

RETI;

F_IRQ1_Service_10kHz:

 … … ;

R1 = Data_Entry; // R1 points to sample vector

R2 = Conf_ Entry; // R2 points coefficient vector

FIR_MOV ON; // Enable automatic data movement for FIR operations

MR = [R1] * [R2], N; // Rank n FIR calculation

FIR_MOV OFF;

R3 = R4 LSR 4; // MR / 215 obtains 16-bit output

R3 = R3 LSR 4;

R3 = R3 LSR 4;

R3 = R3 LSR

3;

[P_DAC1] = R3; // Output to DAC1

RETF;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 90 V1.0 November 26, 2007

Description: Disable automatic data movement for FIR operations. It affects the behavior of FIR,

which is global. Hence, use it in interrupt with care.

Description: Enable FIQ

Example: FIQ ON; // Enable IRQ

Description: Disable FIQ

Example: FIQ OFF // Disable FIQ

Description: Enable IRQ

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 91 V1.0 November 26, 2007

Example: IRQ ON; // Enable IRQ

Description: Disable IRQ

Example: IRQ OFF // Disable IRQ

Description: Set FIQ/IRQ flags.

Example: INT FIQ; // Enable FIQ, disable IRQ

INT FIQ, IRQ; // Enable IRQ, FIQ

INT OFF; // Disable both IRQ and FIQ

Description: The instruction will generate waiting time of 4 cycles for delay and other purpose. This is

implemented as an unconditional jump to next address.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 92 V1.0 November 26, 2007

Example: Delay_Loop:

NOP; // Waiting

CMP R1, 0xFFFF; // Search for end waiting flags

JA Exit_Loop; // End waiting

R1 += 1; // Waiting for delay counting

JMP Delay_Loop;

Exit_Loop:

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 93 V1.0 November 26, 2007

3 unSP -1.0 Instruction Set

3.1 General Description

unSP 1.0 instruction set is the same as unSP 1.1 instruction set except for the instruction format, cycles,

and affected flags. So, while introducing unSP 1.0 instruction set, instruction format, cycles, and affected

flags are mainly described.

3.2 unSP-1.0 Instruction Cycles

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 94 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 95 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 96 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 97 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 98 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 99 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 100 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 101 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 102 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 103 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 104 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 105 V1.0 November 26, 2007

4 unSP -1.2 Instruction Set

4.1 unSP-1.2 Instruction Set

4.1.1 Data-Transfer Instructions

Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X

shows different form according to addressing mode. The prefix of source register

Rs@ Meaning

Rs No increment/decrement

Rs-- After load, Rs= Rs-1

Rs++ After load, Rs= Rs+1

++Rs Before load, Rs= Rs+1

Examples: R1 = 0x28; // IM6

R2 = 0x2400; // IM 16

R3 = [BP+0x08]; // [BP+IM6]

R4 = [0x30]; // A6

BP = [0x2480]; // A16

SR = R2; // R

PC = D:[R1++]; // [R], Write to PC, cycles:7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 106 V1.0 November 26, 2007

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode. The prefix of source register:

Rs@ Meaning

Rs No increment/decrement

Rs-- After load, Rs= Rs-1

Rs++ After load, Rs= Rs+1

++Rs Before load, Rs= Rs+1

Example: [BP+0x08] = R3; // Write to [BP+IM6]

[0x30] = R4; // Write to [A6]

[0x2480] = BP; // Write to [A16]

D:[R4++] = PC; // Read from PC, Cycles 7

Description: Push a number (number n=1~7, SIZE) of register Rx-Ry (Rx~RySP) to memory pointed

by Rs decreasingly.

Example: PUSH PC, R3 to [SP]; // Push PC(R7) through R3, and N=5

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 107 V1.0 November 26, 2007

Note: PUSH R1, BP to [SP] is equivalent to PUSH BP, R1 to [SP].

Description: Copy a set of memory pointed by Rs consecutively to a set of register Rx-Ry (Rx~Ry SP)

where n=1~7.

Example: POP P4, PC from [SP]; // Pop R4 through PC, and N=4

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 108 V1.0 November 26, 2007

4.1.2 Data Processing Instructions

Data Processing Instructions include ALU Operation, Bit Operation, Shift Operation, Mul Operation, Div

Operation, EXP Operation, NOP, etc..

ALU Operation Instructions that carry out the operation as RD = X # Y. X and Y will show different

meanings according to the addressing mode. Because the same explanation for X, Y and the description

for Rs, Rd will be involved in instruction they will be listed in Table 4.1.

Table 4.1 The meanings for X, Y in operation as Rd = X # Y

Addressing

Mode
X, Y

IM6
X is Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and then be

operated with X.

IM16 X is Rs, Y is IM16

[BP+IM6] X is Rd, Y is the memory in PAGE0 addressed as (BP+IM6)

[A6] X is Rd, Y is the memory in PAGE0 addressed as (0x00~0x3F)

[A16] X is Rs. Y is the memory in PAGE0 addressed as (0x0000~0xFFFF)

R X is Rd, Y is Rs.

{D:}[R]

{D:}[R--]

{D:}[R++]

{D:}[++R]

X is Rd, Y is the memory address pointed by the offset in Rs. Rs may point data

segment in PAGE0 as ‘D’ is ignored or in non-PAGE0 as ‘D’ is not ignored and its

page index depends on DS in SR register. Rs can be increased by 1 before ALU

operation or increased/decreased by 1 after ALU operation.

Note:

 For 16-bit direct memory addressing, there are two kinds of instruction format:

 Rd = Rs # [A16]; (W=0)

 [A16] = Rd # Rs; (W=1)

 On the Cycles column, the number after ‘/’ denotes writing to PC.

 The prefix of source register:

Rs@ Meaning

Rs No increment/decrement

Rs-- After ALU_OP, Rs=Rs-1

Rs++ After ALU_OP, Rs=Rs+1

++Rs Before ALU_OP, Rs=Rs+1

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 109 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd = X +

Y. X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 += 0x28; // IM6

R2 = R1 + 0x2400; // IM16

R3 += [BP+0x08]; // [BP+IM6]

R4 += [0x30]; // [A6]

BP = R4 + [0x2480]; // [A16]

[0x2480] = BP + R2; // [A16], BP + R2 is assigned to MEM[0x2480]

SR += R2; // R

PC += D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 110 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 = 0x28, Carry; // R1 = R1 + IM6 + C

R2 = R1 + 0x2400, Carry; // R2 = R1 + IM16 + C

R3 += [BP+0x08], Carry; // R3 = R3 + [BP+IM6] + C

R4 += [0x30]; // R4 = R4 + [A6] + C

BP = R4 + [0x2480], Carry; // BP = R4 + [A16] + C

[0x2480] = BP + R2, Carry; // [A16], BP + R2 + C is assigned to MEM[0x2480]

SR += R2, Carry; // SR = SR + R2 + C

PC += D:[BP++], Carry; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 111 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction without carry in arithmetical

operation, i.e. Rd = X - Y. X, Y will have different meanings according to the addressing mode. See

Table 4.1.

Example: R1 -= 0x28; // R1 = R1 – IM6

R2 = R1 - 0x2400; // R2 = R1 – IM16

R3 -= [BP+0x08]; // R3 = R3 – [BP+IM6]

R4 -= [0x30]; // R4 = R4 – [A6]

BP = R4 - [0x2480]; // BP = R4 – [A16]

[0x2480] = BP - R4; // [A16] = BP – R4

SR -= R2; // SR = SR – R2

PC -= D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 112 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction with carry in arithmetical

operation, i.e. Rd = X – Y – C = X + (~Y) + C. X, Y will have different meanings according to the

addressing mode. See Table 4.1.

Example: R1 -= 0x20, Carry; // R1 = R1 – IM6 - C

R2 = R1 - 0x2400, Carry; // R2 = R1 – IM16 - C

R3 -= [BP+0x08], Carry; // R3 = R3 – [BP+IM6] - C

R4 -= [0x30], Carry; // R4 = R4 – [A6] - C

BP = R4 - [0x2480], Carry; // BP = R4 – [A16] - C

[0x2480] = BP - R4, Carry; // [A16] = BP – R4 - C

SR -= R2, Carry; // SR = SR – R2 - C

PC -= D:[BP++], Carry; // Write to PC, cycles: 7

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd = -X = ~X+1.

The meaning of X will be described as follow according to the different addressing modes. See Table 4.1

Example: R1 = -0x27; // R1 = - IM6

R3 = -[BP+0x08]; // R3 = - [BP+IM6]

R4 = -[0x30]; // R4 = - [A6]

BP = -[0x2480]; // BP = - [A16]

[0x2480] = -BP; // [A16] = - BP

SR = -R2; // SR = - R2

PC = -D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 113 V1.0 November 26, 2007

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X -

Y. But its result will not be stored and only affect NZSC flags. X, Y will have different meanings

according to the addressing mode. See Table 4.1.

Example: CMP R1, 0x27; // Compare R1, IM6

CMP R3, [BP+0x08]; // Compare R3, [BP+IM6]

CMP R4, [0x30]; // Compare R4, [A6]

CMP BP, [0x2480]; // Compare BP, [A16]

CMP SR, R2; // Compare SR, R2

CMP PC, D:[BP++]; // Compare with PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 114 V1.0 November 26, 2007

Description: This operation is to multiply two registers and place the result at MR. It supports 3 kinds

of multiplication, signed*signed, signed*unsigned, and unsigned*unsigned. The signed-to-signed

multiplication is used as default. If the fraction mode is ON, the result of multiplication will be shifted

1-bit left. Only R0~ R6 is available for the destination register (Rd).

Note: MUL only support signed*signed, unsigned*signed, unsigned*unsigned types to increase the

encoding space of machine code. If user uses the signed*unsigned type in the program, the assembler

will exchange the Rd, Rs position in the output machine code. For example, the instruction “MR = R1 *

R2, su” will be assembled the same as “MR = R2 * R1, us”.

Example: MR = R2 * R1; // Two signed values

MR = R1 * R2, us; // R1 is unsigned and R2 is signed

MR = R3 * R4, ss; // Two signed values

MR = R3 * R4, uu; // Two unsigned values

Description: This operation is using a 36-bit arithmetic unit to sum up a consecutive register

multiplication and propagate coefficients for next FIR. It supports 3 kinds of multiplication,

signed*signed, unsigned*signed, and unsigned*unsigned. The signed-to-signed multiplication is used

as default. If the fraction mode is ON, the result of every multiplication will be shifted 1-bit left and then

sum up. The pointer register Rd and Rs will be adjusted automatically. If FIR MOVE mode is ON and

N>1, the contents of memory pointed by Rd are also moved forward. After the operation, the 4-bit MSB

of ALU (guard bits) will be placed at shift buffer (SB). The sign flag will be set if overflow occurred with

the final result.

Note: The result of multiplication will be incorrect if the following conditions are both met:

(N>1) and (either Rd or Rs are set to R3 or R4) and (Rd and Rs are set to the same register)

This operation of previous version unSP-1.0/unSP-1.1 doesn’t change the sign flag, but the unSP-1.2 will

change this flag to indicate overflow condition.

MULS only support signed*signed, unsigned*signed, unsigned*unsigned types to increase the

encoding space of machine code. If user uses the signed*unsigned type in the program, the assembler

will exchange the Rd, Rs position in the output machine code. For example, the instruction “MR = [R1] *

[R2], su, 4 ” will be assembled the same as “MR = [R2] * [R1], us, 4”.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 115 V1.0 November 26, 2007

The inner product levels, N=0-15 and N=0 denotes the 16-level inner product operation.

Example: MR = [R2] * [R1], 8; // The inner multiplication of two signed

MR = [R1] * [R2], us, 2; // R1 is unsigned, R2 is signed.

MR = [R2] * [BP], ss, 4; // Two signed value.

MR = [R2] * [BP], uu, 4; // Two unsigned value.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 116 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical AND operation, i.e. Rd = X & Y. The X

and Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 &= 0x2F; // R1 = R1 & IM6

R3 &= [BP+0x08]; // R3 = R3 & [BP+IM6]

R4 &= [0x30]; // R4 = R4 & [A6]

BP = R2 & [0x2480]; // BP = R2 & [A16]

[0x2480] = R2 & BP; // [A16] = R2 & BP

SR &= R2; // SR = SR & R2

PC &= D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 117 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 |= 0x2F; // R1 = R1 | IM6

R3 |= [BP+0x08]; // R3 = R3 | [BP+IM6]

R4 |= [0x30]; // R4 = R4 | [A6]

BP = R2 | [0x2480]; // BP = R2 | [A16]

[0x2480] = R2 | BP; // [0x2480] = R2 | BP

SR |= R2; // SR = SR | R2

PC |= D:[BP++]; // Write to PC, cycles: 7

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X ^

Y. The X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 ^= 0x2F; // R1 = R1 ^ IM6

R3 ^= [BP+0x08]; // R3 = R3 ^ [BP+IM6]

R4 ^= [0x30]; // R4 = R4 ^ [A6]

BP = R2 ^ [0x2480]; // BP = R2 ^ [A16]

[0x2480] = R2 ^ BP; // [0x2480] = R2 ^ BP

SR ^= R2; // SR = SR ^ R2

PC ^= D:[BP++]; // Write to PC, cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 118 V1.0 November 26, 2007

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However, its

result will not be stored and it only affects NZ flags. The X and Y will have different meanings according

to the addressing mode. See Table 4.1.

Example: TEST R1, 0x27; // TEST R1 and IM6

TEST R3, [BP+0x08]; // TEST R3 and [BP+IM6]

TEST R4, [0x30]; // TEST R4 and [A6]

TEST BP, [0x2480]; // TEST BP and [A16]

TEST SR, R2; // TEST SR and R2

TEST PC, D:[BP++]; // TEST PC and D:[BP++], cycles: 7

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 119 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic operation with logical shift right

where nn is number of shifting bits and ranged in [1~4].

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

ASR: (Arithmetic Shift Right with MSB, which fits for signed)

E2, E1, E0 are sign extension bit of the most significant bit in Rs.

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ASR 2; // SR = SR | (R2 / 22)

SP += R1 ASR 4, Carry; // SP = SP + (R1 / 24) + C

R2 = R1 ASR 2; // R2 = R1 / 22

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 120 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic and logical operations with logical
shift left where nn is number of shifting bits and ranged in [1~4].
Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

LSL: (Logic Shift Left)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 LSL 2; // SR = SR | (R2 << 2)

SP += R1 LSL 4, Carry; // SP = SP + (R1 << 4) + C

R2 = R1 LSL 2; // R2 = R1 << 2

Description: The group of instruction will be executed with logical shift right where nn is number of shifting

bits and ranged in [1~4].

Before shifting op:

SB is the shift buffer. Suppose nn=3, then after shift op of

LSR: (Logic Shift Right)

Note: Carry flag only couples with ALU operation, not shift operation.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 121 V1.0 November 26, 2007

Example: SR |= R2 LSR 2; // SR = SR | (R2 >> 2)

SP += R1 LSR 4, Carry; // SP = SP + (R1 >> 4) + C

R2 = R1 LSR 2; // R2 = R1 >> 2

Description: The group of instruction will be executed in arithmetic and logical operations with rotate

shift left where nn is number of position shift and ranged in [1~4].

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of:

ROL: (Rotate Left with SB) SB

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROL 2; // SR = SR | (R2 ROL 2)

SP += R1 ROL 4, Carry; // SP = SP + (R1 ROL 4) + C

R2 = R1 ROL 2; // R2 = R1 ROL 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 122 V1.0 November 26, 2007

Description: The group of instruction will be executed in arithmetic and logical operations with rotate

shift right where nn is number of shifting bits and ranged in [1~4].

Before shifting op:

SB is the shift buffer. Suppose nn=3, after shift op of

ROR: (Rotate Right with SB)

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROR 2; // SR = SR | (R2 ROR 2)

SP += R1 ROR 4, Carry; // SP = SP + (R1 ROR 4) + C

R2 = R1 ROR 2; // R2 = R1 ROR 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 123 V1.0 November 26, 2007

Description: This is a 16-bit multi-cycle shift operation, but it can support 32-bit shift operation by

combining 2 shift operations. The result of 32-bit shift operation is placed at MR, the shifted bits and

R4/R3 will be applied an OR operation automatically. Shift operations can support ASR/ASROR/LSL/

LSLOR/LSR/LSROR/ROL/ROR commands. The ROR/ROL operation will shift with carry flag, and the

drop bit will place at carry flag after operation. Only R0~R6 is available for the destination register (Rd).

SFT_OP Syntax

ASR Rd = Rd ASR Rs;

ASROR MR |= Rd ASR Rs;

LSL Rd = Rd LSL Rs;

LSLOR MR |= Rd LSL Rs;

LSR Rd = Rd LSR Rs;

LSROR MR |= Rd LSR Rs;

ROL Rd = Rd ROL Rs;

ROR Rd = Rd ROR Rs;

Note: Rs[4:0] valid: ASR/ASROR/LSL/LSLOR/LSR/LSROR; Rs[3:0] valid: ROL/ROR.

Example: R2 = R2 ASR R1; // 16-bit arithmetic right shift

R3 = R3 LSR R1; // 32-bit arithmetic right shift

MR |= R4 ASR R1;

R4 = R4 LSL R1; // 32-bit logical left

shift MR |= R3 LSL R1;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 124 V1.0 November 26, 2007

Description: Executing bit operation at register value, the original value of accessing bit will affect the

zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be 0.

Executing bit operation with the value at memory location indexed by register. Users can use the “D:”

indicator to access memory space large than 64K words, If “D:” indicator is used, the MSB 6-bit of

accessing address will use data segment (DS) value else will be zeroed. The original value of

accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be

0.

Notes: Only the least significant 4 bits of source register (Rs[3:0]) are used and only R0~ R6 is

available for the destination register (Rd).

BIT_OP

Address Syntax Meaning

Mode

TSTB Rd, Rs; Z= (Rd[Rs[3:0]]== 1)? 1’b0: 1’b1
R

TSTB Rd, offset; Z= (Rd[offset]== 1)? 1’b0: 1’b1

TSTB {D:}[Rd], Rs; Z= (MEM[{DS,Rd}][Rs[3:0]]== 1)? 1’b0: 1’b1
TSTB

[R]
TSTB {D:}[Rd], offset; Z= (MEM[{DS,Rd}][offset]== 1)? 1’b0: 1’b1

SETB Rd, Rs; Rd[Rs[3:0]]= 1
R

SETB Rd, offset; Rd[offset]= 1

SETB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= 1
SETB

[R]
SETB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= 1

CLRB Rd, Rs; Rd[Rs[3:0]]= 0
R

CLRB Rd, offset; Rd[offset]= 0

CLRB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= 0
CLRB

[R]
CLRB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= 0

INVB Rd, Rs; Rd[Rs[3:0]]= ~Rd[Rs[3:0]]
R

INVB Rd, offset; Rd[offset]= ~Rd[offset]

INVB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= ~ MEM[{DS,Rd}][Rs[3:0]]
INVB

[R]
INVB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= ~ MEM[{DS,Rd}][offset]

Example: INVB R4, R2; // If R2[3:0]=0x3, R4[3]=~R4[3]

CLRB R3, 10; // R3[10]=0

SETB [R1], R3; // If R3[3:0]=0x3, MEM[R1][3]=1

SETB D:[R1], 13; // MEM[{DS,R1}][13]=1

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 125 V1.0 November 26, 2007

Description: DIVQ uses the non-restoring division algorithm to yield a 1-bit quotient at each

instruction. To implements a division with a 32-bit unsigned dividend and 16-bit unsigned divisor, the

32-bit dividend must be placed at MR, 16-bit divisor must be placed at R2, and the AQ flag must be

cleared before executing. Finally, the quotient will be placed at R3.

Note: AQ=FR[14], AQ flag determines the ADD or SUB operation in the non-restoring division

algorithm

Example: // 32-bit unsigned dividend / 16-bit unsigned divisor

// 0x0003_1713 / 0x0625

R4 = 0x0003;

R3 = 0x1713; // Load

data R2 = 0x0625;

R1 = FR;

CLRB R1, 14; // Clear AQ

flag FR = R1;

R1 = 1;

R4 = R4 LSL R1; // Shift 1-bit

left MR |= R3 LSL R1;

R1= 0;

div_unsigned: // Implement an unsigned division with 16

iterations DIVQ MR, R2;

R1 += 1;

CMP R1, 16;

JNE div_unsigned;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 126 V1.0 November 26, 2007

Description: DIVS uses the non-restoring division algorithm to compute the sign of the quotient. To

implements a division with a 32-bit signed dividend and 16-bit signed divisor, the 32-bit dividend must

be placed at MR, 16-bit divisor must be placed at R2, and the AQ flag must be cleared. The DIVS

instruction is executed at the beginning of the division. Then DIVQ instruction is executed repeatedly.

Finally, the quotient will be placed at R3.

Output Formats

The format of a division result is based on the format of the input operands. The division logic has

been designed to work most efficiently with fully fractional numbers. If the dividend is in M.N format (M

bits before the binary point, N bits after), and the divisor is O.P format, the quotient’s format will be

(M-O+1).(N-P-1).

Integer Division

To generate an integer quotient, you must shift the dividend to the left one bit, placing it in 31.1 format.

The output format for this division will be (31-16+1).(1-0-1), or 16.0. You must ensure that no

significant bits are lost during the left shift, or an invalid result will be generated.

ERROR Conditions

There are two cases where an invalid or inaccurate result can be generated

 Negative Divisor Error

If you attempt to use a negative number as the divisor in signed division, the quotient generated

may be one LSB less than the correct result unless the result should equal 0x8000. there are two

ways to correct for this error

 Avoid division by negative numbers. If your divisor is negative, take its absolute value and

invert the sign of the quotient after division.

 Check the result by multiplying the quotient by the divisor. Compare this value with the

dividend, and if they are off by more than the value of the divisor, increase the quotient

by one.

 Unsigned Division Error

Unsigned divisions can produce erroneous results if the divisor is greater than 0x7FFF. If it is

necessary to perform a such division, both operands should be shifted right one bit. This will

maintain the correct orientation of operands.

Shifting both operands may result in a one LSB error in the quotient. This can be solved by

multiplying the quotient by the original (not shifted) divisor. Subtract this value from the original

dividend to calculate the error. If the error is greater than the divisor, add one to the quotient, if it is

negative, subtract one from the quotient.

Example: // 2-bit signed dividend / 16-bit signed divisor

// 0xFFFF_1713 / 0x0625

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 127 V1.0 November 26, 2007

R4 = 0xFFFF;

R3 = 0x1713; // Load

data R2 = 0x0625;

R1 = FR;

CLRB R1, 14; // Clear AQ

flag FR = R1;

R1 = 1;

R4 = R4 LSL R1; // Shift 1-bit

left MR |= R3 LSL R1;

R1 = 0;

DIVS MR, R2; // Get the sign of the quotient

div_signed: // Implement an unsigned division with 15 iterations

DIVQ MR, R2;

R1 += 1;

CMP R1, 15;

JNE div_signed;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 128 V1.0 November 26, 2007

Description:

The EXP instruction derives the effective exponent of the R4 register to prepare for the normalization

operation, and places the result in the R2. The result is equal to the number of the redundant sign bit

in the R4.

Example: R2 = EXP R4; // If R4 = 16’b1111_0111_0111_0000, then R2 = 3

// If R4 = 16’b0000_0000_0100_1111, then R2 = 8

4.1.3 Data Segment Access Instruction

Description: DS=0x12;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 129 V1.0 November 26, 2007

Example: DS=0x12;

Description: Access Data Segment (DS) with register. Only 6-bit value of the source register (Rs[5:0])

will be set on DS. The zero-extended is used when getting DS segment.

Example: DS = R1;

R2 = DS;

Description: Access the Flag Register (FR) value.

Example: FR = R1;

 R2 = FR;

4.1.4 Transfer-Control Instructions

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 130 V1.0 November 26, 2007

Description: This is a software interrupt instruction (SWI). CPU will interrupt current program

executing sequence, save the PC, SR to memory location indexed by SP and jump to the BREAK

service routine which address stored in memory location [0x00FFF5].

Example: BREAK; // Generate a software interrupt

Description: For addressing mode [A22], this is a far function call instruction with 22-bit immediate address.

Both PC and SR will be pushed to memory indexed by SP and SP, CS will be updated automatically after

this operation.

For addressing mode R, this is a far function call instruction with 22-bit indirect address in MR. The

22-bit content of MR {R4[5:0], R3} will be used as destination address. PC and SR will be pushed to

memory location indexed by SP and SP, CS will be updated automatically after this operation.

Example: CALL 0x12345;

CALL MR; // Push PC and SR, then jump to {R4[5:0],R3}

Description: Return from subroutine instruction. The SR and PC will be popped from memory location

indexed by SP, and return to the calling function.

Example: sub1: .PROC

… …

RETF; // Return from sub1

.ENDP

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 131 V1.0 November 26, 2007

Description: Return from interrupt service routine, if the IRQ Nest Mode (INE) is ON and CPU is executing

IRQ service routine, the FR, SR, PC will be popped from memory location indexed by SP and return to the

interrupted program. Else only the SR, PC will be popped and return to the interrupted program. After this

instruction the BREAK, FIQ, IRQ servicing flag inside CPU will be cleared according to priorities.

Example: .TEXT

.PUBLIC _IRQ1

_IRQ1:

… …

RETI; // Return from IRQ1

Description: A conditional short jump instruction to local label (address within± Note:

D=0 denotes the forward jump, else D=1 denotes the backward jump.

BRANCH_OP Condition Description

JCC C==0 carry clear

JB C==0 below (unsigned)

JNAE C==0 not above and equal (unsigned)

JCS C==1 carry set

JNB C==1 not below (unsigned)

JAE C==1 above and equal (unsigned)

JSC S==0 sign clear

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 132 V1.0 November 26, 2007

BRANCH_OP Condition Description

JGE S==0 great and equal (signed)

JNL S==0 not less (signed)

JSS S==1 sign set

JNGE S==1 not great than (signed)

JL S==1 Less (signed)

JNE Z==0 not equal

JNZ Z==0 not zero

JZ Z==1 Zero

JE Z==1 Equal

JPL N==0 Plus

JMI N==1 Minus

JBE Not (Z==0 and C==1) below and equal (unsigned)

JNA Not (Z==0 and C==1) not above (unsigned)

JNBE Z==0 and C==1 not below and equal (unsigned)

JA Z==0 and C==1 above (unsigned)

JLE Not (Z==0 and S==0) less and equal (signed)

JNG Not (Z==0 and S==0) not great (signed)

JNLE Z==0 and S==0 not less and equal (signed)

JG Z==0 and S==0 great (signed)

JVC N == S not overflow (signed)

JVS N != S overflow (signed)

JMP Always unconditional branch

Example: Loop:

JCC Loop; // Jump to Loop, if Carry flag = 0

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 133 V1.0 November 26, 2007

Description: For addressing mode [A22], this is a far jump instruction with 22-bit immediate address.

The 22-bit target address is range from 0x000000 to 0x3fffff. After this operation, the Code Segment

(CS) will be updated automatically. For addressing mode R, this is a far jump instruction with MR

register. The 22-bit content of MR {R4[5:0],R3} will be used as destination address.

Example: [example1]

0x008010 GOTO far_func;

… ...

0x035678 far_func:

[example2]

GOTO MR; // Jump to {R4[5:0],R3}

4.1.5 Miscellaneous Instructions

Flag Register:

F E D C B A 9 8 7 6 5 4 3 2 1 0

- AQ BNK FRA FIR SB FIQ IRQ INE PRI

Description: Switch FIR MOVE mode on/off. If the FIR Move mode is on, the value stored in

multiplication parameter array indexed by Rd will be moved forward while executing MULS instruction.

The FIR=0 denotes the FIR MOVE mode ON, else it denotes OFF. The default value of FIR is 0 (ON)

Example: FIR_MOV ON;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 134 V1.0 November 26, 2007

Description: Enable/disable FIQ interrupt. The FIQ=1 denotes the FIQ enable, else it denotes disable.

The default value of FIQ is 0 (disable).

Example: FIQ ON; // Enable FIQ

Description: Enable/disable IRQ interrupt. The IRQ=1 denotes IRQ enable, else it denotes IRQ disable.

The default value of IRQ is 0 (disable).

Example: IRQ ON; // Enable IRQ

D
escription: Set FIQ/IRQ flags.

Example: INT FIQ,IRQ; // Enable FIQ, IRQ (OP[1:0]= 2’b11)

INT FIQ; // Enable FIQ, disable IRQ (OP[1:0]= 2’b10)

INT OFF; // Disable FIQ, IRQ (OP[1:0]= 2’b00)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 135 V1.0 November 26, 2007

Description: Switch IRQ NEST mode on/off. If IRQ NEST mode is on, IRQ interrupt which priority greater

than the PRI register can be accepted while CPU executing IRQ service routine, in such case CPU will

push FR/SR/PC into stack and change the PRI register with IRQS value before entering IRQ service

routine, and restore PC/SR/FR from stack while leaving IRQ service routine. The INE=1 denotes the IRQ

NEST mode ON, else it denotes OFF. The default value of INE is 0 (OFF).

Example: IRQNEST ON;

Description: Switch secondary register bank mode ON/OFF, 4 shadow registers SR1-SR4 are added

in ’nSP -1.2 and above. User can use this instruction to switch secondary register bank mode on/off. When

shadow register mode is on, all operation with R1-R4 will map to SR1-SR4. Secondary Bank Registers are

suggested to be used in interrupt service routine only to reduce the effort of saving registers in service

routine. The BNK=1 denotes secondary register bank is used, else the primary register bank is used. The

default value of BNK is 0 (OFF).

Example: SECBANK ON;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 136 V1.0 November 26, 2007

Description: Switch to fraction mode. If fraction mode is on, the result of multiplication will be shift 1 bit

left to present the correct result of fraction number multiplication. The FRA=1’b1 denotes the fraction

mode ON, else it denotes OFF. The default value of FRA is 1’b0 (OFF).

Example: FRACTION ON;

Description: No operation, only increase PC to the next address.

Example: Delay_Loop:

NOP; // Waiting

CMP R1, 0xFFFF; // Search for end waiting flags

JA Exit_Loop; // End waiting

R1 += 1; // Waiting for delay

counting JMP Delay_Loop;

Exit_Loop:

4.1.6 Instruction Set Summary

Syntax F E D C B A 9 8 7 6 5 4 3 2 1 0

SECBANK ON/OFF 1 1 1 1 - - - 1 0 1 0 0 1 0 1 BNK

FRACTION ON/OFF 1 1 1 1 - - - 1 0 1 0 0 0 1 1 FRA

FIR_MOV ON/OFF 1 1 1 1 - - - 1 0 1 0 0 0 1 0 FIR

FIQ ON/OFF 1 1 1 1 - - - 1 0 1 0 0 1 1 FI 0

IRQ ON/OFF 1 1 1 1 - - - 1 0 1 0 0 1 0 0 IRQ

INT FIQ/IRQ/OFF 1 1 1 1 - - - 1 0 1 0 0 0 0 FI IRQ

IRQNEST ON/OFF 1 1 1 1 - - - 1 0 1 0 0 1 1 IN 1

Rd {ALU_OP} = IM6 ALU_OP Rd 0 0 1 IM6

ALU_OP Rd 1 0 0 0 0 1 Rs
Rd = Rs {ALU_OP} IM16

 IM16

Rd {ALU_OP} = Rs ALU_OP Rd 1 SFT_OP n Rs

Rd {ALU_OP} = [A6] ALU_OP Rd 1 1 1 A6

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 137 V1.0 November 26, 2007

Syntax F E B 8 7 6 5 4 3 2 1 0

ALU_OP Rd 1 0 0 0 1 W Rs
Rd = Rs {ALU_OP} [A16]

 A16

Rd {ALU_OP} = {D:}[Rs@] ALU_OP Rd 0 1 1 D @ Rs

Rd {ALU_OP} = [BP+IM6] ALU_OP Rd 0 0 0 IM6

BIT_OP Rd, Rs 1 1 1 0 Rd 0 0 0 BIT_O 0 Rs

BIT_OP Rd, offset 1 1 1 0 Rd 0 0 1 BIT_O offset

BIT_OP {D:}[Rd], Rs 1 1 1 0 Rd 1 0 D BIT_O 0 Rs

BIT_OP {D:}[Rd], offset 1 1 1 0 Rd 1 1 D BIT_O offset

Rd = Rd LSFT_OP Rs 1 1 1 0 Rd 1 0 LSFT_OP 1 Rs

MR = Rd*Rs, {ss/us/uu} 1 1 1 S Rd S 0 0 0 0 1 Rs

MR = [Rd] * [Rs], {ss/us/uu}, N 1 1 1 S Rd S 1 N Rs

DIVQ MR, R2 1 1 1 1 - - - 1 0 1 1 - - 0 1 1

DIVS MR, R2 1 1 1 1 - - - 1 0 1 1 - - 0 1 0

R2 = EXP R4 1 1 1 1 - - - 1 0 1 1 - - 1 0 0

NOP 1 1 1 1 - - - 1 0 1 1 - - 1 0 1

BRANCH_OP IM6 BRANCH_OP 1 1 1 0 0 D IM6

GOTO MR 1 1 1 1 1 1 1 0 1 1 - - - - - -

1 1 1 1 1 1 1 0 1 0 A22[21:16]
GOTO A22

 A22[15:

DS = IM6 1 1 1 1 1 1 1 0 0 0 IM6

DS = Rs / Rs= DS 1 1 1 1 - - - 0 0 0 1 0 W Rs

FR = Rs / Rs = FR 1 1 1 1 - - - 0 0 0 1 1 W Rs

PUSH RH, RL to [Rs] 1 1 0 1 Rd 0 1 0 N Rs

POP RL, RH from [Rs] 1 0 0 1 Rd 0 1 0 N Rs

CALL MR 1 1 1 1 - - - 1 0 1 1 - - 0 0 1

1 1 1 1 - - - 0 0 1 A22[21:16]
CALL A22

 A22[15:

RETF 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0

RETI 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0

BREAK 1 1 1 1 - - - 1 0 1 1 - - 0 0 0

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 138 V1.0 November 26, 2007

5 unSP-1.3 Instruction Set

5.1 unSP-1.3 Instruction Set

unSP 1.3 instruction set has a group of instructions the same as unSP 1.2 instruction set. Only the new

instructions will be introduced below.

5.1.1 Byte Register Indirect

Rs = R1 / R2 / R3 / R4

Rd = SP / R1 / R2 / R3 / R4 / BP / SR / PC

For load operation, the high byte of Rd is 0.

Rs = R1 / R2 / R3 / R4

Rd = SP / R1 / R2 / R3 / R4 / BP / SR / PC

For store operation, only the low byte of Rd is stored to B:[Rs@]

*: Write to PC

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 139 V1.0 November 26, 2007

5.1.2 Byte Indexed Address

Rd = R1 / R2 / R3 / R4

For load operation, the high byte of Rd is 0.

Rd = R1 / R2 / R3 / R4

For store operation, only the low byte of Rd is stored to B:[BP+IM6]

*: Write to PC

5.1.3 Byte Register Indexed Address

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 140 V1.0 November 26, 2007

Rs = R1 / R2 / R3 / R4

Rd = SP / R1 / R2 / R3 / R4 / BP / SR / PC

For load operation, the high byte of Rd is 0.

Rs = R1 / R2 / R3 / R4

Rd = SP / R1 / R2 / R3 / R4 / BP / SR / PC

For store operation, only the low byte of Rd is stored to B:I[Rs@] *:

Write to PC

5.1.4 Special Register Access

Description: Access the Stack Segment Register (SS) value.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 141 V1.0 November 26, 2007

Description: Access the Inner Product Data Segment Register (MDS) value with R3.

Description: Executing bit operation with the value at memory location indexed by 16 bits operand. Users

can use the “D:” indicator to access memory space large than 64K words, If “D:” indicator is used, the MSB

6-bit of accessing address will use data segment (DS) value else will be zeroed. The original value of

accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be 0.

BIT_OP Syntax Meaning

TSTB TSTB {D:}[A16], offset; Z= (MEM[{DS,A16}][offset]== 1)? 1’b0: 1’b1

SETB SETB {D:}[A16], offset; MEM[{DS,A16}][offset]= 1

CLRB CLRB {D:}[A16], offset; MEM[{DS,A16}][offset]]= 0

INVB INVB {D:}[A16], offset; MEM[{DS,A16}][offset]= ~ MEM[{DS,A16}]offset]

Example: SETB [0x5678], 5; // MEM[0x5678][5]= 1

SETB D:[0x1234], 13; // If DS=3, MEM[{0x31234}][13]= 1

Description: ISA 1.2 used the non-resorting division algorithm to yield a 1-bit quotient at each instruction.

16 instructions at least are needed to implement a division with a 32-bits dividend and 16-bits division.

Therefore, two new division instructions, DIVUU and DIVSS, are introduced to help reducing code size in

ISA-1.3. DIVUU performs dividing unsigned 32-bit dividend (MR) by unsigned

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 142 V1.0 November 26, 2007

16-bit divisor (R2). DIVSS performs dividing signed 32-bit dividend (MR) by signed 16-bit divisor (R2)

Example: // 32-bits unsigned dividend / 16-bits unsigned divisor

// 0x0003_1713 / 0x0625

R4 = 0x0003;

R3 = 0x1713; // Load data

R2 = 0x0625;

R1 = FR;

CLRB R1, 14; // Clear AQ

flag FR = R1;

R1 = 1;

R4 = R4 LSL R1; // Shift 1-bit

left MR |= R3 LSL R1;

DIVUU MR, R2; // Implement an unsigned division

Example: // 32-bits signed dividend / 16-bits signed divisor

// 0xFFFF_1713 / 0x0625

R4= 0xFFFF;

R3= 0x1713; // Load data

R2= 0x0625;

R1= FR;

CLRB R1, 14; // Clear AQ

flag FR= R1;

R1= 1;

R4= R4 LSL R1; // Shift 1-bit

left MR|= R3 LSL R1;

DIVSS MR, R2; // Implement an signed division

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 143 V1.0 November 26, 2007

6 unSP-2.0 Instruction Set

6.1 unSP-2.0 Instruction Cycles

unSP 2.0 instruction set has a group of instructions the same as unSP 1.2 instruction set which are

introduced at Chapter 4. So, while introducing the same instructions of unSP 2.0 instruction set,

instruction format, cycles, and affected flags are mainly described.

6.1.1 Data-Transfer Instructions

Note: For addressing mode [BP+IM6], STORE operation only need 1 cycle.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 144 V1.0 November 26, 2007

6.1.2 Data Processing Instructions

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 145 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 146 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 147 V1.0 November 26, 2007

*Cycles:

N+2 (DM/IM no conflict, FIR_MOVE Off)

2N+1 (DM/IM no conflict, FIR_MOVE On)

2N+2 (DM/IM conflict, FIR_MOVE Off)

3N (DM/IM conflict, FIR_MOVE On)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 148 V1.0 November 26, 2007

Description: This operation is using a 36-bit arithmetic unit to sum up a consecutive register

multiplication and propagate coefficients for next FIR. It supports 3 kinds of multiplication,

signed*signed, unsigned*signed, and unsigned*unsigned. The signed-to-signed multiplication is used

as default. If the fraction mode is ON, the result of every multiplication will be shifted 1-bit left and then

sum up. The pointer register Rd and Rs will be adjusted automatically. If FIR MOVE mode is ON and

N>1, the contents of memory pointed by Rd are also moved forward. After the operation, the 4-bit

MSB of ALU (guard bits) will be placed at shift buffer (SB). The sign flag will be set if overflow

occurred with the final result.

In unSP2.0, multiplication data will be fetched from INST Bus and DATA Bus concurrently to

accelerating MAC operation, if the parameter array location indexed by Rd, Rs place at different

memory range (IM/DM), MULS will have the best performance or bus conflict stall may be occurred

and need 2 times of executing cycles.

Note: The inner product levels, N=0-15 and N=0 denotes the 16-level inner product operation.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 149 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 150 V1.0 November 26, 2007

Note: FIQ, IRQ and user routine has their own Shift buffers. User does not need to save shift buffer for

interrupt routines.

Shift buffer values are unknown after multiplication or filter operations. User should make no

assumptions to its value after the operations.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 151 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 152 V1.0 November 26, 2007

Note: Rs[4:0] valid: ASR/ASROR/LSL/LSLOR/LSR/LSROR; Rs[3:0] valid: ROL/ROR.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 153 V1.0 November 26, 2007

6.1.3 Data Segment Access Instruction

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 154 V1.0 November 26, 2007

6.1.4 Transfer-Control Instructions

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 155 V1.0 November 26, 2007

Description: A conditional short jump instruction to local label (address within ±

Note: D=0 denotes the forward jump, else D=1 denotes the backward jump.

BRANCH_OP Condition Description

JCC C==0 carry clear

JB C==0 below (unsigned)

JNAE C==0 not above and equal (unsigned)

JCS C==1 carry set

JNB C==1 not below (unsigned)

JAE C==1 above and equal (unsigned)

JSC S==0 sign clear

JGE S==0 great and equal (signed)

JNL S==0 not less (signed)

JSS S==1 sign set

JNGE S==1 not great than (signed)

JL S==1 Less (signed)

JNE Z==0 not equal

JNZ Z==0 not zero

JZ Z==1 Zero

JE Z==1 Equal

JPL N==0 Plus

JMI N==1 Minus

JBE Not (Z==0 and C==1) below and equal (unsigned)

JNA Not (Z==0 and C==1) not above (unsigned)

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 156 V1.0 November 26, 2007

BRANCH_OP Condition Description

JNBE Z==0 and C==1 not below and equal (unsigned)

JA Z==0 and C==1 above (unsigned)

JLE Not (Z==0 and S==0) less and equal (signed)

JNG Not (Z==0 and S==0) not great (signed)

JNLE Z==0 and S==0 not less and equal (signed)

JG Z==0 and S==0 great (signed)

JVC N == S not overflow (signed)

JVS N != S overflow (signed)

JMP Always unconditional branch

6.1.5 Miscellaneous Instructions

Flag Register:

F E D C B A 9 8 7 6 5 4 3 2 1 0

- AQ BNK FRA FIR SB FIQ IRQ INE PRI

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 157 V1.0 November 26, 2007

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 158 V1.0 November 26, 2007

Description: No operation, only increase PC to the next address.

6.2 New Instructions of unSP-2.0 Instruction Set

unSP 2.0 has some new kind of ALU instructions that operation with extend registers.

For this kind of instructions, the operation code contains three parts that are extend code, word group 1,

and word group 2, and extend code, the operation code format is extend code + word group 1 + word

group 2.

Note:

� Ra, Rb: R0~R15

Rx, Ry: R8~R15

� For 16-bit direct memory addressing, there are two kinds of instruction format:

Ra = Rb # [A16]; (W=0)

[A16] = Ra # Rb; (W=1)

� On the Cycles column, the number after ‘/’ denotes writing to PC.

For addressing mode [R], the number after ‘/’ denotes using [++Ry] prefix.

~ The prefix of source register

Table 6.1

Rs@ Meaning

Ry No increment/decrement

Ry-- After ALU_OP, Ry = Ry-1

Ry++ After ALU_OP, Ry = Ry +1

++Ry Before ALU_OP, Ry = Ry +1

6.2.1 Data-Transfer Instructions

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 159 V1.0 November 26, 2007

Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X

shows different form according to addressing mode.

Example: R10 = 0x28;

R12 = 0x2400;

R13 = [BP+0x08];

R14 = [0x30]; R14 =

[0x2480]; [0x2480] =

R12; SR = R12;

PC += D:[BP++];

// IM6

// IM16

// [BP+IM6]

// [A6]

// [A16]

// [A16], R12 is assigned to MEM[0x2480] // R

// [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 160 V1.0 November 26, 2007

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode. Note: For addressing mode [BP+IM6], STORE

operation only need 2 cycle.

Example: [BP+0x08] = R11; // [BP+IM6]

[0x30] = R12; // [A6]

[0x2480] = R13; // [A16]

D:[R12++] = R14; // [R]

Description: Push a set of registers (RH ~ RL) to memory location indicated by Rb consecutively. Note:

PUSH R9, R15 to [SP] is equivalent to PUSH R15, R9 to [SP].

Example: PUSH R8, R12 to [SP]; // Push R8 through R12, and N=5

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 161 V1.0 November 26, 2007

Description: Pop a set of registers (RL ~ RH) from memory location indicated by Rb consecutively.

Example: POP R12, R15 from [SP]; // Pop R12 through R15, and N=4

6.2.2 Data Processing Instructions

Data Processing Instructions include ALU Operation, Bit Operation, Shift Operation, Mul Operation, Div

Operation, EXP Operation, NOP, etc..

ALU Operation Instructions that carry out the operation as RD = X # Y. X and Y will show different

meanings according to the addressing mode. Because the same explanation for X, Y and the description

for Rs, Rd will be involved in instruction they will be listed in Table 6.2.

Table 6.2 The meanings for X, Y in operation as Rd = X # Y

Addressing Mode X, Y

X is Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and
IM6

then be operated with X.

IM16 X is Rs, Y is IM16

[BP+IM6] X is Rd, Y is the memory in PAGE0 addressed as (BP+IM6)

[A6] X is Rd, Y is the memory in PAGE0 addressed as (0x00~0x3F)

[A16] X is Rs. Y is the memory in PAGE0 addressed as (0x0000~0xFFFF)

R X is Rd, Y is Rs.

{D:}[R]

{D:}[R--]

{D:}[R++]

{D:}[++R]

X is Rd, Y is the memory address pointed by the offset in Rs. Rs may point

data segment in PAGE0 as ‘D’ is ignored or in non-PAGE0 as ‘D’ is not

ignored and its page index depends on DS in SR register. Rs can be

increased by 1 before ALU operation or increased/decreased by 1 after ALU

operation.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 162 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd = X+Y.

X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 += 0x28; // IM6

R12 = R11 + 0x2400; // IM 16

R13 += [BP+0x08]; // [BP+IM6]

R14 += [0x30]; // [A6]

BP = R14 + [0x2480]; // [A16]

[0x2480] = BP + R12; // [A16], BP + R12 is assigned to MEM[0x2480]

SR += R12; // R

PC += D:[BP++]; // [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 163 V1.0 November 26, 2007

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 += 0x28, Carry; // IM6

R12 = R11 + 0x2400, Carry; // IM16

R13 += [BP+0x08] , Carry; // [BP+IM6]

R14 += [0x30] , Carry; // [A6]

// [A16] BP = R14 + [0x2480] , Carry;

[0x2480] = BP + R12, Carry; SR +=

R12, Carry;

// [A16], BP + R12 + C is assigned to MEM[0x2480]

// R

// [R] PC += D:[BP++], Carry;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 164 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction without carry in arithmetical

operation, i.e. Rd = X - Y. X, Y will have different meanings according to the addressing mode. See

Table 6.2.

R10 -= 0x28; // IM6 Example:

 R12 = R11 - 0x2400; // IM16

 R13 -= [BP+0x08]; // [BP+IM6]
R14 -= [0x30]; // [A6]

BP = R14 - [0x2480]; // [A16]

[0x2480] = BP - R12; // [A16], BP - R12 is assigned to MEM[0x2480]

SR -= R12; // R

PC -= D:[BP++]; // [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 165 V1.0 November 26, 2007

Description: The group of instruction will be executed for subtraction with carry in arithmetical

operation, i.e. Rd = X – Y – C = X + (~Y) + C. X, Y will have different meanings according to the

addressing mode. See Table 6.2.

Example: R10 -= 0x28, Carry;

R12 = R11 - 0x2400, Carry;

R13 -= [BP+0x08] , Carry;

R14 -= [0x30] , Carry;

BP = R14 - [0x2480] , Carry;

[0x2480] = BP - R12, Carry;

SR -= R12, Carry;

PC -= D:[BP++], Carry;

// IM6

// IM16
// [BP+IM6]

// [A6]

// [A16]

// [A16], BP - R12 is assigned to MEM[0x2480]

// R

// [R]

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd = -X =

~X+1. The meaning of X will be described as follow according to the different addressing modes. See

Table 6.2.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 166 V1.0 November 26, 2007

Example: R10 = -0x28;

R12 = -0x2400;

R13 = -[BP+0x08];

R14 = -[0x30];

BP=-[0x2480];

[0x2480] = -BP;

SR = -R12;

PC = -D:[BP++];

// IM6

// IM16

// [BP+IM6]

// [A6]

// [A16]

// [A16], -BP is assigned to MEM[0x2480]

 // R

// [R]

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X - Y. But its

result will not be stored and only affect NZSC flags. X, Y will have different meanings according to the addressing

mode. See Table 6.2.

Example: CMP R11, 0x27; // IM6

CMP R11, 0x1227; // IM16

CMP R13, [BP+0x08]; // [BP+IM6]

CMP R14, [0x30]; // [A6]

CMP R14, [0x2480]; // [A16]

CMP R1, R12; // R

CMP R14, D:[BP++]; // [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 167 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical AND operation, i.e. Rd = X & Y. The X

and Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 &= 0x28; // IM6

R12 = R11 & 0x2400; // IM16

R13 &= [BP+0x08]; // [BP+IM6]

R14 &= [0x30]; // [A6]

BP = R14 & [0x2480]; // [A16]

[0x2480] = BP & R12; // [A16], BP & R12 is assigned to MEM[0x2480]

SR &= R12; // R

PC &= D:[BP++]; // [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 168 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 10.

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 |= 0x28;

R12 = R11 | 0x2400;

R13 |= [BP+0x08];

R14 |= [0x30];

BP = R14 | [0x2480];

[0x2480] = BP | R12;

SR |= R12;

PC |= D:[BP++];

// IM6

// IM16

// [BP+IM6]

// [A6]

// [A16]

// [A16], BP | R12 is assigned to MEM[0x2480]

// R

// [R]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 169 V1.0 November 26, 2007

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X ^

Y. The X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 ^= 0x28;

R12 = R11 ^ 0x2400;

R13 ^= [BP+0x08];

R14 ^= [0x30];

BP = R14 ^ [0x2480];

[0x2480] = BP ^ R12; SR ^=

R12;

PC ^=D:[BP++];

// IM6

// IM16

// [BP+IM6]

// [A6]

// [A16]

// [A16], BP ^ R12 is assigned to MEM[0x2480]

// R

// [R]

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However, its

result will not be stored and it only affects NZ flags. The X and Y will have different meanings according to

the addressing mode. See Table 6.2.

Example: TEST R11, 0x27; // IM6

TEST R11, 0x1227; // IM16

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 170 V1.0 November 26, 2007

TEST R13, [BP+0x08]; // [BP+IM6]

TEST R14, [0x30]; // [A6]

TEST R14, [0x2480]; // [A16]

TEST R1, R12; // R

TEST R14, D:[BP++]; // [R]

Description: Executing bit operation with the value at memory location indexed by 16 bits operand.

Users can use the “D:” indicator to access memory space large than 64K words, If “D:” indicator is used,

the MSB 6-bit of accessing address will use data segment (DS) value else will be zeroed. The original

value of accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else

will be 0.

BIT_OP Syntax Meaning

TSTB TSTB {D:}[A16], offset; Z= (MEM[{DS,A16}][offset]== 1)? 1’b0: 1’b1

SETB SETB {D:}[A16], offset; MEM[{DS,A16}][offset]= 1

CLRB CLRB {D:}[A16], offset; MEM[{DS,A16}][offset]]= 0

INVB INVB {D:}[A16], offset; MEM[{DS,A16}][offset]= ~ MEM[{DS,A16}]offset]

Example: SETB [0x5678], 5; // MEM[0x5678][5]= 1

SETB D:[0x1234], 13; // If DS=3, MEM[{0x31234}][13]= 1

6.2.3 Instruction Set Summary

Table 6.3

Type Operation Cycles F E D C B A 9 8 7 6 5 4 3 2 1 0

DSI6 DS=IM6 1 1 1 1 1 1 1 1 0 0 0 IM6

1 1 1 1 - - 0 0 0 1 A22[21:16]
CALL CALL A22 3

 A22[15:

0]

1 1 1 1 1 1 1 0 1 0 A22[21:16]
JMPF GOTO A22 3

 A22[15:
0]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 171 V1.0 November 26, 2007

Type Operation Cycles F E D C B A 9 8 7 6 5 4 3 2 1 0

JMPR GOTO MR 2 1 1 1 1 1 1 1 0 1 1 - - - - - -

FIR_MOV FIR_MOV ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 0 1 0~fir

Fraction Fraction ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 0 1 1 Fr

INT SET INT FIQ/IRQ 1 1 1 1 1 - - - 1 0 1 0 0 0 0 F I

IRQ IRQ ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 1 0 0 I

SECBANK SECBANK ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 1 0 1 S

FIQ FIQ ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 1 1 F 0

IRQ Nest Mode IRQNEST ON/OFF 1 1 1 1 1 - - - 1 0 1 0 0 1 1 N 1

BREAK BREAK 4 1 1 1 1 - - - 1 0 1 1 - - 0 0 0

CALLR CALL MR 4 1 1 1 1 - - - 1 0 1 1 - - 0 0 1

DIVS DIVS MR,R2 1 1 1 1 1 - - - 1 0 1 1 - - 0 1 0

DIVQ DIVQ MR,R2 1 1 1 1 1 - - - 1 0 1 1 - - 0 1 1

EXP R2 = EXP R4 1 1 1 1 1 - - - 1 0 1 1 - - 1 0 0

NOP NOP 1 1 1 1 1 - - - 1 0 1 1 - - 1 0 1

DS Access DS=Rs/ Rs=DS 1 (c) 1 1 1 1 - - - 0 0 0 1 0 W Rs

FR Access FR=Rs/ Rs=FR 1 (d) 1 1 1 1 - - - 0 0 0 1 1 W Rs

MUL MR = Rd* Rs 1 (e) 1 1 1 SRs
Rd SRd

0 0 0 0 1 Rs

MULS MR = [Rd]*[Rs], size (f) 1 1 1 SRs
Rd SRd

1 SIZE Rs

Register BITOP BITOP Rd,Rs 1 (g) 1 1 1 0 Rd 0 0 0 Bit op 0 Rs

Register BITOP BITOP Rd,offset 1 1 1 1 0 Rd 0 0 1 Bit op offset

Memory BITOP BITOP DS:[Rd],offset 1 1 1 1 0 Rd 1 1 Ds Bit op offset

Memory BITOP BITOP DS:[Rd],Rs 1 1 1 1 0 Rd 1 0 Ds Bit op 0 Rs

1 1 1 1 - Ds 1 0 0 1 Bit op offset
Memory BITOP

BITOP

DS:[A16],offset
2

 A1
6

Shift Rd=Rd LSFT Rs 1/2 (h) 1 1 1 0 Rd 1 0 LSFT 1 Rs

RETI RETI 6/7 (i) 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0

RETF RETF 6 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0

Base+Disp6 Rd = Rd op [BP+IM6] 1/2 (j) OP Rd 0 0 0 IM6

Imm6 Rd = Rd op IM6 1 (k) OP Rd 0 0 1 IM6

Branch Jxx label 1/4 (l) COND? 1 1 1 0 0 D IM6

Indirect
PUSH/POP Rx,Ry

to/from [Rs]
N+1/N+2 (m) OP Rd 0 1 0 SIZE Rs

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 172 V1.0 November 26, 2007

Type Operation Cycles F E D C B A 9 8 7 6 5 4 3 2 1 0

DS_Indirect Rd = Rd op DS:[Rs++] 2/3 (n) OP Rd 0 1 1 Ds @ Rs

OP Rd 1 0 0 0 0 1 Rs
Imm16 Rd = Rs op IMM16 2

 IMM1
6

OP Rd 1 0 0 0 1 W Rs
Direct16 Rd = Rs op A16 2

 A16

Direct6 Rd = Rd op A6 1 OP Rd 1 1 1 A6

Register
Rd = Rd op Rs SFT

sfc 1 (o) OP Rd 1 SFT SFC Rs

Ext Code 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Ext Register Ra=Ra op Rb
2 OP Ra2 - 0

Ra

3 0 0 0 0 Rb

Ext Push/Pop
PUSH/POP Rx, Ry

to/from [Rb] N+2/N+3 (m) W SIZE Rx 0 0 0 1 0 Rb

33
OP Ra2 - 0

Ra

0 1 0 0 Rb Ext IMM16 Ra=Rb op IMM16

 IMM1
6

33
OP Ra2 - 0

Ra

0 1 1 W Rb Ext A16 Ra=Rb op [A16]

 A16

Ext DS_Indirect Rx=Rx op Ds:[Ry++] 3/4 (n) OP Rx 0 1 0 Ds @ Ry

Ext IM6 Rx=Rx op IM6 2 OP Rx 1 1 0 IM6

Ext Base+Disp6 Rx=Rx op [BP+IM6] 2/3 (j) OP Rx 0 1 1 IM6

Ext A6 Rx=Rx op [A6] 2 OP Rx 1 1 1 A6

(a) Rd/Rs: R0-R7, Ra/Rb: R0-R15, Rx/Ry: R8-R15.

(b) Extend Operation: use 0xff80 as extension prefix code and followed with extend instruction.

(c) DS Access: W = 0 Rs=Ds, W = 1 Ds=Rs.

(d) FR Access: W = 0 Rs=FR, W = 1 FR=Rs.

(e) MUL: SR d = 0, Rd is unsigned else Rd is signed, SR s = 0, Rs is unsigned else Rs is

signed. Operation Mode: Rd*Rs: unsigned x unsigned, unsigned x signed, signed x

signed.

Rd: support R0-R6 only.

(f) MULS: if FIR MOV flag is on, the parameter array index by Rd will be shift 1 word forward, so need

additional N cycles.

SR d = 0, Rd is unsigned else Rd is signed, SR s = 0, Rs is unsigned else Rs is

signed. Operation Mode: Rd X Rs: unsigned x unsigned, unsigned x signed, signed

x signed. Size=0~16 and OP[6:3]=4’b0000 indicate executing 16 levels inner

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 173 V1.0 November 26, 2007

product.

Rd: support R0-R6 only.

(No Bus Conflict, FIR_MOV OFF): N+2

(No Bus Conflict, FIR_MOV ON): 2N+1

(Bus Conflict, FIR_MOV OFF): 2N+2

(Bus Conflict, FIR_MOV ON): 3N

(g) Bit op:

00 01 10 11

test set clear inverse

(h) Shift: ASR/LSL/LSR/ROL/ROR: 1 cycle, ASROR/LSLOR/LSROR: 2

cycles LSFT:

000 001 010 011 100 101 110 111

ASR ASROR LSL LSLOR LSR LSROR ROL ROR

(i) RETI: IRQ interrupts with IRQNEST ON must restore FR from stack, so 7 cycles are needed to

execute RETI, other interrupts need 6 cycles only.

(j) Base+Disp6: read operation need 1 cycle to calculate BP+IM6 address first, so cycle count will

increase by 1, write operation only need 1 executing cycle. Extend operation will increase additional 1

cycle.

Rd: support R0-R6 only.

(k) IMM6: Rd: support R0-R6 only.

(l) Branch taken: 4 cycles, not taken: 1 cycle.

(m) Push: N+1 cycles, Pop: N+2 cycles, POP with update PC: N+4, Extend operation will increase

additional 1 cycle.

(n) DS_indirect: read memory with [++Rs] prefix need 1 cycle to calculate [++Rs] address, so cycle

count is 3, other operation only need 2 executing cycles. Extend operation will increase additional 1

cycle. @: prefix

00 01 10 11

Rs Rs-- Rs++ ++Rs

(o) SFT: Shift type

000 001 010 011 100 101

NOP ASR LSL LSR ROL ROR

SFC: Shift count

00 01 10 11

1 2 3 4

(p) If any instruction updates PC value, CPU will flush the pipeline registers and need 2 additional

cycles to fetch the new instruction.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 174 V1.0 November 26, 2007

6.3 Stall Condition

unSP 2.0 is a pipelined architecture micro processor, the overlapped execution of instructions requires

pipelining of functional units and duplication of resources to allow all possible combinations of instructions

in the pipeline. If some combinations of instructions cannot be accommodated because of resource

conflicts, unSP 2.0 will add stall cycles to pipeline data path to resolve such hazards.

All stall condition of unSP 2.0 are list as below.

1. DAG Read after Write: Data read after write stall, because unSP 2.0 separate memory read and

memory write at different pipeline stage, we must make sure data read/write sequence must keep in

order of instruction execution

Figure 6.1

Example :

[R2] = R3;

R4 = [0x3]; // If this instruction will read data memory and

// the previous would write data memory, stall 1 cycle.

2. DAG Read after Branch: Branch condition is tested at execution stage of branch instruction and

the next 2 instructions would be fetched into pipeline sequentially. if branch is taken, these two

instructions will be dropped, there may be wrong data read access occurred if the next instruction of

branch need to read data from memory. unSP 2.0 will stall 1 cycle to avoid such wrong access.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 175 V1.0 November 26, 2007

Figure 6.2

Example:

JNE label1; // if there are memory read access instruction after branch will stall 1 cycle.

R2 = [R3];

3. IAG input RF not ready: If IAG use RF value as next address source, but the referenced RF

value is not ready or is updating in EXE stage. unSP 2.0 will stall until RF value is ready. We don’t

forward register write back from EXE stage to decode stage in this situation to cut critical path.

Figure 6.3

Example:

R3 = 0x1234;

GOTO MR; // use register which is destination register of previous instruction

// as next instruction address source will stall 1 cycle

R2 = R1; // instruction A

NOP;

MR = R1 * R2; // MULS will send Rs to IAG Bus as address, and the previous instruction A

// will update Rs in decode stage of MULS , stall 1 cycle to cut critical path

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 176 V1.0 November 26, 2007

4. DAG input RF not ready: If DAG use RF value as next address source, but the referenced RF

value is not ready or is updating in EXE stage. unSP 2.0 will stall until RF value is ready. We don’t

forward register write back from EXE stage to decode stage in this situation to cut critical path.

Figure 6.4

Example:

R2=R1+2;

R3=[R2]; // If use register which is the destination register of previous instruction // as memory access source

register will add 1 stall cycle

5. MAC forward stall: Cut critical path from MAC unit output in execution stage to register files

read in decode stage

Figure 6.5

Example:

MR = R1 * R2;

R1 += 1;

R2 -= R4; // If Rs=R3, R4 will stall 1 cycle.

6. Bank change stall: In unSP 2.0, registers value are read at decode stage, and bank flag is

changed at execution stage, we must use bank flag to select which bank registers are read in decode

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 177 V1.0 November 26, 2007

stage, so if bank flags will be changed by SETF or SET FR instruction, we must stall pipeline before bank

flag is changed.

Figure 6.6

Example:

SECBANK ON; // if this instruction will change bank (SECBANK on/off or FR=Rs) and

// either the next 2 instruction use R1-R4 as source register will stall 1 cycle.

R2=R1+2;

FR = R2; // if this instruction will change bank (SECBANK on/off or FR=Rs) and

// either the next 2 instruction use R1-R4 as source register will stall 1 cycle.

NOP;

R1 = R3 - R2;

7. Shifter source not ready stall: Shifter unit is placed at MR stage, we need to stall pipeline if any

resource needed by shift operation is not ready.

Figure 6.7

Example : R1 = 0x5;

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 178 V1.0 November 26, 2007

R2 = R2 ASR R1; // SFT_CNT comes from register which is destination register of

// previous instruction will stall 1 cycle

R2 = R3;

 R4 = R2 LSL R1; // SFT_IN comes from register which is destination register of // previous

instruction will stall 1 cycle

R1 = R1 + 0x1234;

R2 = R3 ROL R4; // ROR/ROL operation needs C Flag which would be updated

// by previous instruction will stall 1 cycle

8. Delay calculate register not ready: DS_IND with ++Rs prefix, POP, BP+IM6 instructions need to

read memory with address calculated by register and offset, To cut critical path, unSP 2.0 will delay 1

cycle and store register value into pipelined registers then send this register and offset to DAG to

calculate address. If the source register value is not ready in decode stage, unSP 2.0 will stall until

register is ready.

Figure 6.8

Example :

BP = 0x5678;

R2 = [BP+0x34]; // Use the register which will be updated by previous

instruction // as address source of memory read

9. MAC Write Stall: Stall for MULS operation to update memory content. If FIR_MOV flag is on,

unSP 2.0 will shift right 1 word of the memory content indexed by Rd. We need to stall 1 cycle between

continuous data read for data write back.

10. DATA Bus not ready: unSP 2.0 will stall if data bus not ready.

11. INST Bus not ready: unSP 2.0 will stall if inst bus not ready.

12. BUS Fighting stall: unSP 2.0 will stall if INST Bus and Data Bus is fighting.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 179 V1.0 November 26, 2007

7 Appendix A Difference Between un S P - 1.2 & unSP- 1.3

 New behavior of checking interrupt

In unSP 1.3, CPU does not check interrupt after RETI instruction. Besides, CPU dos not check

interrupt after MDS access instructions

 Configurable multiplier

The multiplication of unSP 1.2 needs 9 cycles to sum up partial products. In order to accelerate the

multiplication, the multiplier comes with unSP1.3 can be configured to sum up these partial product

in one-cycle. Nevertheless, extra 6K gates are needed for this multiplier

 Stack access pin

The stack access pin output (high active) is used to indicate that CPU is accessing (reading or

writing) stack. The system designer can use this signal to detect stack underflow or overflow. The

system becomes more robust.

A pin is added to indicate current instruction reads or writes the stack. These instructions are:

 PUSH ... to [SP]

 POP … from [SP]

 The action of pushing SR and OC when an interrupt occurs

 The action of pushing FR, SR and PC when higher priority interrupt occurs in nested interrupt

mode

 RETI

 RETF

 CALL

 Modified nested interrupt supports

IRQ_NEST mode is always ON. Then, unSP 1.3 will save PC, SR and FR into memory when

serving IRQ or FIQ, and restore them after IRQ or FIQ service routine.

IRQ_ENABLE is turned off automatically when unSP 1.3 performing IRQ service routine. User can

turn on IRQ_ENABLE in IRQ service routine to allow higher priority IRQ to interrupt. unSP 1.3 can

re-execute FIQ service routine when serving FIQ if FIQ_ENABLE is on. Both FIQ_ENABLE and

IRQ_ENABLE are turned off automatically when unSP 1.3 performing FIQ service routine.

 Address change pin

The address change pin output (low active) is used to indicate that address is changing.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 180 V1.0 November 26, 2007

8 Appendix B Difference Between un S P - 2.0 & unSP- 1.2

 The behavior of CS auto increase in memory bank boundary

Since unSP 2.0 is a 4 stage pipelined architecture processor, it will use a 22-bit IAG unit to

pre-fetch the instruction data and increase instruction address automatically, the behavior of CS

auto increase in memory bank boundary is different from unSP 1.2 which designed by multi-cycle

architecture.

For example:

INST address from 0x1 FFFE – 0x20000, the behavior of SR and PC

Table 8.1

 unSP2.0 unSP1.2

INST address SR PC SR PC

0x1FFFE 0x0001 0xFFFE 0x0001 0xFFFE

0x1FFFF 0x0001 0xFFFF 0x0002 0xFFFF

0x20000 0x0002 0x0000 0x0002 0x0000

0x20001 0x0002 0x0001 0x0002 0x0001

 Disable interrupt detect instructions.

unSP 1.2 will check the interrupt signals(FIQ/IRQ) at the last cycle of every instruction except RA16

(Direct16 instruction with read) for semaphore implementation of the real-time operating system.

unSP 2.0 check the interrupt signals(FIQ/IRQ) at the decode stage of every instruction except

RA16/RW16 (Direct16 instruction with read/write) and RETI instructions for semaphore

implementation of the real-time operating system and make sure the user’s program will be

executed at least 1 instruction after leaving interrupt service routine to avoid infinite loop of

interrupt servicing.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 181 V1.0 November 26, 2007

9 Appendix C Comparison Between unSP Versions

 unSP 1.0 unSP 1.1 unSP 1.2 unSP 1.3 unSP 2.0

Memory Bus
Single Bus Single Bus Single Bus Single Bus

Separate

Inst/Data

Address depth 22-bit 22-bit 22-bit 22-bit 22-bit / 22-bit

Data width 16-bit 16-bit 16-bit 16-bit 16-bit / 16-bit

Pipeline No No No No 4 stage pipeline

General Registers

(R1-R4)
Yes Yes Yes Yes Yes

System Registers

(SP, BP, SR, PC)
Yes Yes Yes Yes Yes

Second Bank

Registers

(SR1-SR4)

No No Yes Yes Yes

Inner Flag Register

(FR)
No No Yes Yes Yes

Extend Registers

(R8-R15)
No No No No Yes

Interrupt Sources
10 (FIQ,IRQ,BRK)

10

(FIQ,IRQ,BRK)

10

(FIQ,IRQ,BRK)

10

(FIQ,IRQ,BRK)

10

(FIQ,IRQ,BRK)

Nested IRQ No No Yes Yes Yes

Average CPI 6 5 5 5 2

Area (TSMC

0.35um)
- 750umx650um

2220umx488.4u

m

CPU: 9K

ICE: 3K

CPU: 14.3K

ICE: 3.7K

2100umx950um

CPU: 19.5K

ICE: 5K

Speed - 80MHz(TC) 111.1 MHz(TC) 58.8 MHz(WC) 109.6 MHz(TC)

Power - 0.16 mA/MHz 0.3 mA/MHz - -

MAC operation
Signed x signed

Signed x unsigned

Signed x signed

Signed x

unsigned

Signed x signed

Signed x

unsigned

Unsigned x

unsigned

Signed x signed

Signed x

unsigned

Unsigned x

unsigned

Signed x signed

Signed x

unsigned

Unsigned x

unsigned

MAC Cycles 13 12 12/13(uxu) 12/13(uxu) 1

Guard bits No No 4 4 4

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 182 V1.0 November 26, 2007

unSP 1.0 unSP 1.1 unSP 1.2 unSP 1.3 unSP 2.0

Fraction mode No No Yes Yes Yes

Division No No

1- bit

Non-restoring

division

(DIVS/DIVQ)

1- bit

Non-restoring

division

(DIVS/DIVQ) and

single instruction

division

(DIVUU/DIVSS)

1 bit

Non-restoring

division

(DIVS/DIVQ)

EXP No No Yes Yes Yes

Bit operation
No No

Register /

Memory

Register /

Memory

Register /

Memory

16 bits shifter No No Yes Yes Log Shifter

DS access No No Yes Yes Yes

FR access No No Yes Yes Yes

SS access No No No Yes No

MDS access No No No Yes No

Far jump Yes Yes Yes Yes Yes

Far indirect jump No No Yes Yes Yes

Far indirect call No No Yes Yes Yes

Extend Operations No No No No Yes

Immediate (I6 / I16) Yes Yes Yes Yes Yes

Direct (A6 / A16) Yes Yes Yes Yes Yes

Indirect (DS

indirect)
Yes Yes Yes Yes Yes

Relative (BP+IM6) Yes Yes Yes Yes Yes

Multiple indirect

(Push/Pop)
Yes Yes Yes Yes Yes

Byte Register

Indirect
No No No Yes No

Byte Indexed

Address
No No No Yes No

Byte Register

Indexed
No No No Yes No

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 183 V1.0 November 26, 2007

10 Appendix D CPU Cycle Formula and Examples

c.1 unSP 1.2 Cycle Formula

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

Control Flow

CALL 2 9+2*PM+2*DM 13 call func_1

RETF 1 8+PM+2*DM 11

RETI (IRQ, FIQ, BRK) 1 8+PM+2*DM 11

RETI (Nested IRQ ON) 1 10+PM+3*DM 14

BREAK 1 10+2*PM+2*DM 14

GOTO 2 5+2*PM 7

JUMP (non-taken) 1 2+PM 3

JUMP (taken) 1 4+2*PM 6

GOTO MR 1 4+2*PM 6

CALL MR 1 8+2*PM+2*DM 12

NOP 1 2+PM 3

Operation Mode

INT FIQ, IRQ 1 2+PM 3

INT OFF 1 2+PM 3

INT FIQ 1 2+PM 3

INT IRQ 1 2+PM 3

IRQ ON/OFF 1 2+PM 3

FIQ ON/OFF 1 2+PM 3

FIR_MOV ON/OFF 1 2+PM 3

FRACTION ON/OFF 1 2+PM 3

SECBANK ON/OFF 1 2+PM 3

IRQNEST ON/OFF 1 2+PM 3

 PM denotes the waiting cycle from program memory, and DM denotes the waiting cycle from data memory.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 184 V1.0 November 26, 2007

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

Push/ Pop

PUSH RH, RL to [Rs] 1 4+2*N+N*DM+PM 20
PUSH BP, R1 to [SP];

SP points to DM

POP RH, RL to [Rs] 1 4+2*N+N*DM+PM 20
POP R1, BP from [SP];

SP points to DM

Multiplication

MR = Rd* Rs,{ss,us,uu} 1 13+PM 14 MR=R1*R2

MR=[Rd]*[Rs],{ss,us,uu},N 1 6+10*N+N*(PM+DM)+PM 67 MR=[R1]*[R2], 5;

Division

DIVS MR,R2 1 2+PM 3 DIVS MR,R2

DIVQ MR,R2 1 3+PM 4 DIVQ MR,R2

Exponential Detect

R2=EXP R4 1 2+PM 3 R2=EXP R4

Shift Operation

Rd=Rd SFT Rs 1 8+PM 9 R1=R1 ASR R2

Bit Operation

Bitop Rd, Rs 1 4+PM 5 TSTB R1,R2

Bitop Rd,offset 1 4+PM 5 SETB R2,0x3

Bitop D:[Rd], Rs 1 7+PM+2*DM 10 CLRB [R1],R3

Bitop D:[Rd],offset 1 7+PM+2*DM 10 INVB [R2],0x4

Flag Setting

DS=Rs / Rs=DS 1 2+PM 3

FR=Rs / Rs=FR 1 2+PM 3

ALU Operation

Rd= Rd op [BP+IM6] 1 6+PM+DM 8 R1=R1+[BP+3]

Rd=Rd op D:[Rs@] 1 6+PM+DM 8 R3=R3+D:[R1++]

Rd = Rd op Rs SFT N 1 3+PM 4 R2=R2-R3 ASR 2

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 185 V1.0 November 26, 2007

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

Rd=Rd op IM6 1 2+PM 3 R1=R1+0x8

Rd=Rd op IM16 2 4+2*PM 6 R2=R1+0x5678

Rd=Rd op [A6] 1 5+PM+DM 7 R3=[0x20]

Rd=Rs op [A16] 2 7+2*PM+DM 10 R4=[0x7600]

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 186 V1.0 November 26, 2007

c.2 unSP 1.3 Cycle Formula

 Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

Control Flow

CALL 2 9+2*PM+2*DM 13 call func_1

RETF 1 8+PM+2*DM 11

RETI (IRQ, FIQ, BRK) 1 8+PM+2*DM 11

RETI (Nested IRQ ON) 1 10+PM+3*DM 14

BREAK 1 10+2*PM+2*DM 14

GOTO 2 5+2*PM 7

Jcond (not-taken) 1 2+PM 3

Jcond (taken) 1 4+2*PM 6

GOTO MR 1 4+2*PM 6

CALL MR 1 8+2*PM+2*DM 12

NOP 1 2+PM 3

Operation Mode

INT FIQ, IRQ 1 2+PM 3

INT OFF 1 2+PM 3

INT FIQ 1 2+PM 3

INT IRQ 1 2+PM 3

IRQ ON/OFF 1 2+PM 3

FIQ ON/OFF 1 2+PM 3

FIR_MOV ON/OFF 1 2+PM 3

FRACTION ON/OFF 1 2+PM 3

SECBANK ON/OFF 1 2+PM 3

IRQNEST ON/OFF 1 2+PM 3

Push/ Pop

 PM denotes the waiting cycle from program memory, and DM denotes the waiting cycle from data memory.

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 187 V1.0 November 26, 2007

Example

(SPCE060)

Instruction
Code Width CPU Cycle Formula

Rd is NOT

Program

Memory
1

Example Condition

 (unit: word) (if pc) Data

Memory
1

 Counter(N) 5

 PUSH BP, R1 to [SP];

PUSH RH, RL to [Rs] 1 4+2*N+N*DM+PM 20 SP points to DM

POP RH, RL to [Rs] 1 4+2*N+N*DM+PM 20

POP R1, BP from [SP];

SP points to DM

Multiplication

MR= Rd* Rs,{ss,us,uu} 1 13+PM 14 MR=R1*R2

MR=[Rd]*[Rs],{ss,us,uu},N 1 6+10*N+N*(PM+DM)+PM 67 MR=[R1]*[R2], 5;

Division

DIVS MR,R2 1 2+PM 3 DIVS MR,R2

DIVQ MR,R2 1 3+PM 4 DIVQ MR,R2

DIVUU MR,R2 1 48+PM 49 DIVUU MR,R2

DIVSS MR,R2 1 47+PM 48 DIVSS MR,R2

Exponential Detect

R2=EXP R4 1 2+PM 3 R2=EXP R4

Shift Operation

Rd=Rd SFT Rs 1 8+PM 9 R1=R1 ASR R2

Bit Operation

Bitop Rd, Rs 1 4+PM 5 TSTB R1,R2

Bitop Rd,offset 1 4+PM 5 SETB R2,0x3

Bitop D:[Rd], Rs 1 7+PM+2*DM 10 CLRB [R1],R3

Bitop D:[Rd],offset 1 7+PM+2*DM 10 INVB [R2],0x4

Bitop D:[A16],offset 2 8+PM+2*DM 11 CLRB [0x1234],0x3

Flag Setting

DS=Rs / Rs=DS 1 2+PM 3

FR=Rs / Rs=FR 1 2+PM 3

SS=Rs / Rs=SS 1 2+PM 3

MDS=R3 / R3=MDS 1 2+PM 3

ALU Operation

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 188 V1.0 November 26, 2007

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

Rd= Rd op [BP+IM6] 1 6+PM+DM 8 R1=R1+[BP+3]

Rd=Rd op D:[Rs@] 1 6+PM+DM 8 R3=R3+D:[R1++]

Rd = Rd op Rs SFT N 1 3+PM 4 R2=R2-R3 ASR 2

Rd=Rd op IM6 1 2+PM 3 R1=R1+0x8

Rd=Rd op IM16 2 4+2*PM 6 R2=R1+0x5678

Rd=Rd op [A6] 1 5+PM+DM 7 R3=[0x20]

Rd=Rs op [A16] 2 7+2*PM+DM 10 R4=[0x7600]

Rd ÙB/W:[Rs@] 1 10+PM+DM 12

B:[Rs@]=IMM8 2 10+PM+DM 12

W:[Rs@]=IMM 16 2 10+PM+DM 12

Rd ÙB/W:[BP+IM6] 1 6+PM+DM 8

B:[BP+IM6]=IMM8 2 6+PM+DM 8

W:[BP+IM6]=IMM16 2 6+PM+DM 8

Rd ÙB/W:[Rs@] 1 9+PM+DM 11

B:[Rs@]=IMM8 2 9+PM+DM 11

W:[Rs@]=IMM16 3 9+PM+DM 11

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 189 V1.0 November 26, 2007

c.2 unSP 2.0 Cycle Formula

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

(may not reveal to

customers)

Control Flow

CALL 2 3+2*PM+2*DM 7 call func_1

RETF 1 2+PM+2*DM 5

RETI (IRQ, FIQ, BRK) 1 2+PM+2*DM 5

RETI (Nested IRQ) 1 3+PM+3*DM 7

BREAK 1 4+2*PM+2*DM 8

GOTO 2 3+2*PM 5

Jcond (not-taken) 1 1+PM 2

Jcond (taken) 1 4+2*PM 6

GOTO MR 1 3+2*PM 5

CALL MR 1 4+2*PM+2*DM 8

NOP 1 1+PM 2

Operation Mode

INT IRQ, FIQ 1 1+PM 2

INT OFF 1 1+PM 2

INT FIQ 1 1+PM 2

INT IRQ 1 1+PM 2

IRQ ON/OFF 1 1+PM 2

FIQ ON/OFF 1 1+PM 2

FIR_MOV ON/OFF 1 1+PM 2

FRACTION ON/OFF 1 1+PM 2

SECBANK ON/OFF 1 1+PM 2

IRQNEST ON/OFF 1 1+PM 2

Push/ Pop

PUSH RH, RL to [Rs] 1 1+N+N*DM+PM 12
PUSH R1, BP to [SP],

SP points to DM

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 190 V1.0 November 26, 2007

Example

(SPCE060)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

(may not reveal to

customers)

POP RH, RL from [Rs] 1 2+N+N*DM+PM 13
POP R1, BP from [SP],

SP points to DM

Multiplication

MR = Rd* Rs, {ss,us} 1 1+PM 2 MR=R1*R2

DM/PM no conflict,

FIR_MOV OFF

2+N+N*MAX(PM,DM)+PM

13

MR=[R1],[R2], 5

Rd points to OM, Rs

points to PM

DM/PM no conflict,

FIR_MOV ON

1+2*N+N*MAX(PM,DM)+N*

DM+PM

22
MR=[R1],[R2], 5

Rd points to OM, Rs

points to PM

DM/PM conflict,

FIR_MOV OFF

2+2*N+N*(PM+DM)+PM

23

MR=[R1],[R2], 5

Rd points to OM, Rs

points to PM

MR = [Rd]*[Rs], {ss,us}, N 1

DM/PM conflict,

FIR_MOV ON

3*N+(N+1)*PM+(2N-1)*DM

30

MR=[R1],[R2], 5

Rd points to OM, Rs

points to PM

Division

DIVS MR,R2 1 1+PM 2 DIVS MR,R2

DIVQ MR,R2 1 1+PM 2 DIVQ MR,R2

Exponential Detect

R2 = EXP R4 1 1+PM 2 R2 = EXP R4

Shift Operation

Rd = Rd LSFT Rs 1 1+PM 2 R1 = R1 ASR R2

Bit Operation

Bitop Rd, Rs 1 1+PM 2 TSTB R1,R2

Bitop Rd,offset 1 1+PM 2 SETB R2,0x3

Bitop D:[Rd], Rs 1 1+PM+DM 3 CLRB [R1],R3

 unSP Programmer’s Guide

 Generalplus Technology Inc. PAGE 191 V1.0 November 26, 2007

Example

(SPCE06
0)

Program

Memory
1

Data

Memory
1

Instruction
Code Width

(unit: word)

CPU Cycle Formula

(if Rd is NOT pc)

Counter(N) 5

Example Condition

(may not reveal to

customers)

Bitop D:[Rd],offset 1 1+PM+DM 3 INVB [R2],0x4

Bitop D:[A16],offset 2 2+2*PM+DM 5

SETB D:[0x7016],0x8

Flag Setting

DS=Rs / Rs=DS 1 1+PM 2

FR=Rs / Rs=FR 1 1+PM 2

ALU Operation

Rd= Rd op [BP+IM6] 1 2+PM(read) / 1+PM(stall) 3 2 R1=R1+[BP+3]

Rd=Rd op D:[Rs@] 1
2+PM+DM / 3+PM+DM

([++Rs])
4 5

R3=R3+D:[R1++]/

R3=R3+D:[++R1]

Rd = Rd op Rs SFT sfc 1 1+PM 2 R2=R2-R3 ASR 2

Rd=Rd op IM6 1 1+PM 2 R1=R1+0x8

Rd=Rd op IM16 2 2+2*PM 4

R2=R1+0x5678

Rd=Rd op [A6] 1 1+PM+DM 3 R3=[0x20]

Rd=Rs op [A16] 2 2+2*PM+DM 5 R4=[0x7600]

Extend Instruction

Ra=Ra op Rb 2 2+2*PM 4 R2=R8+R3

PUSH Rx,Ry to [Rb] 2 2+N+N*DM+2*PM 14

 PUSH R8,R13 to [SP],

SP points to DM

POP Rx,Ry from [Rb] 2 3+N+N*DM+2*PM 15

 POP R8,R13 from [SP],

SP points to DM

Ra=Rb op IM16 3 3+3*PM 6 R9=R4+0x5678

Ra=Rb op [A16] 3 3+3*PM+DM 7 R10=R1+[0x7016]

Rx=Rx op D:[Ry@] 2
3+2*PM+DM / 4+2*PM+DM

([++Rs])
6 7

R8=R8+D:[R10++] /

R8=R8+D:[++R10]

Rx=Rx op IM6 2 2+2*PM 4 R9=R9+0x8

Rx=Rx op [BP+IM6] 2
3+2*PM(read) /

2+2*PM(stall)
5 4 R8=R8+[BP+3]

Rx=Rx op [A6] 2 2+2*PM+DM 5 R15=[0x20]

	Table of Content
	V1.0

	1 Introduction
	1.1 General Description
	1.2 Pin Diagram
	1.2.1 Pin Diagram and Description of unSP-1.2
	1.2.2 Pin Diagram and Description of unSP-1.3
	1.2.3 Pin Diagram and Description of unSP-2.0

	1.3 Features
	1.3.1 Features of unSP-1.0 and unSP-1.1
	1.3.2 Features of unSP-1.2
	1.3.3 Features of unSP-1.3
	1.3.4 Features of unSP-2.0

	1.4 Architecture
	1.4.1 Architecture of unSP-1.0 and unSP-1.1
	1.4.2 Architecture of unSP-1.2
	1.4.3 Peripheral Interface of unSP-1.2
	1.4.4 Architecture of unSP-1.3
	1.4.5 Architecture of unSP-2.0
	1.4.6 Pipeline Feature of unSP-2.0

	1.5 Register
	1.5.1 Register of unSP-1.0 and unSP-1.1
	1.5.2 Register of unSP–1.2
	1.5.3 Register of unSP-1.3
	1.5.4 Registers of unSP- 2.0

	1.6 Memory
	1.6.1 Memory Map of unSP
	1.6.2 Memory Interface of unSP-1.2
	1.6.3 Memory Architecture of unSP-1.3
	1.6.4 Memory Architecture of unSP-2.0
	1.6.5 Memory Interface of unSP–2.0

	1.7 Addressing Modes
	1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1
	1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0
	1.7.3 9 addressing modes of unSP-1.3

	1.8 Interrupts
	1.8.1 Interrupts of unSP-1.0 and unSP-1.1
	1.8.2 Interrupts of unSP-1.2
	Interrupts
	Interrupts

	1.8.3 Interrupts of unSP-1.3
	1.8.4 Interrupts of unSP-2.0

	1.9 Data Types
	1.10 ALU Operation Types
	1.11 Conditional Branches

	2 unSP- 1.1 Instruction Set
	2.1 unSP Instructions Classification
	2.1.1 Notation
	2.1.2 Instruction Classification

	2.2 unSP Instruction Format
	2.3 unSP-1.1 Instruction Set
	2.3.1 Data-Transfer Instructions
	2.3.2 Arithmetic/Logical-Operation Instructions
	2.3.3 Transfer-Control Instructions
	2.3.4 Miscellaneous Instructions

	3 unSP -1.0 Instruction Set
	3.1 General Description
	3.2 unSP-1.0 Instruction Cycles

	4 unSP -1.2 Instruction Set
	4.1 unSP-1.2 Instruction Set
	4.1.1 Data-Transfer Instructions
	4.1.2 Data Processing Instructions
	4.1.3 Data Segment Access Instruction
	4.1.4 Transfer-Control Instructions
	4.1.5 Miscellaneous Instructions
	4.1.6 Instruction Set Summary

	5 unSP-1.3 Instruction Set
	5.1 unSP-1.3 Instruction Set
	5.1.1 Byte Register Indirect
	5.1.2 Byte Indexed Address
	5.1.3 Byte Register Indexed Address
	5.1.4 Special Register Access

	6 unSP-2.0 Instruction Set
	6.1 unSP-2.0 Instruction Cycles
	6.1.1 Data-Transfer Instructions
	6.1.2 Data Processing Instructions
	6.1.3 Data Segment Access Instruction
	6.1.4 Transfer-Control Instructions
	6.1.5 Miscellaneous Instructions

	6.2 New Instructions of unSP-2.0 Instruction Set
	6.2.1 Data-Transfer Instructions
	6.2.2 Data Processing Instructions
	6.2.3 Instruction Set Summary

	6.3 Stall Condition

	7 Appendix A Difference Between unSP-1.2 & unSP-1.3
	8 Appendix B Difference Between unSP-2.0 & unSP-1.2
	9 Appendix C Comparison Between unSP Versions
	10 Appendix D CPU Cycle Formula and Examples
	c.1 unSP 1.2 Cycle Formula
	c.2 unSP 1.3 Cycle Formula
	c.2 unSP 2.0 Cycle Formula

