unSP Programmer’s Guide

V1.0 November 26, 2007

No.19, Industry E. Rd. IV, Hsinchu Science Park, Hsinchu City 30077, Taiwan, R.O.C.
Tel: +886-3-666-2118 Fax: +886-3-666-2117 Web: www.generalplus.com

-
Az

Generalplus UnSP Programmel”s GU|de

Important Notice

GENERALPLUS TECHNOLOGY INC. reserves the right to change this documentation without prior notice.
Information provided by GENERALPLUS TECHNOLOGY INC. is believed to be accurate and reliable. However,
GENERALPLUS TECHNOLOGY INC. makes no warranty for any errors which may appear in this document.
Contact GENERALPLUS TECHNOLOGY INC. to obtain the latest version of device specifications before placing
your order. No responsibility is assumed by GENERALPLUS TECHNOLOGY INC. for any infringement of
patent or other rights of third parties which may result from its use. In addition, GENERALPLUS products are
not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where
a malfunction or failure of the product may reasonably be expected to result in significant injury to the user,
without the express written approval of Generalplus.

© Generalplus Technology Inc. PAGE 2 V1.0 November 26, 2007

unSP Programmer’s Guide

Table of Content

I (0T L1 A o] o SRRSO 7
1.1 GEeNeral DESCIIPLION ...c..oviieiiiieieeieie ettt bbb 7
I L DT o | o o OSSPSR 7

1.2.1 Pin Diagram and Description 0f UNSP-1.2..........ccccevveiiiieiieieeie e 7
1.2.2 Pin Diagram and Description of UNSP-1.3..........cccceivieiiiieiie e 8
1.2.3 Pin Diagram and Description of UnSP-2.0.........cccceiiiiiiiiieniencee e 10
R = (1] £ PRSP TROPRPR 11
1.3.1 Features of unSP-1.0 and UNSP-1.1 ..ot 11
1.3.2 FEatUres OF UNSP-1.2......ccccciiiiiiiiieieie et 12
1.3.3 Features OF UNSP-1.3 ... 13
1.3.4 FEatures OF UNSP-2.0........ccoiiiiiieiieiee et 14
N ol T T (0] £SO R U ROPTRT 16
1.4.1 Architecture of UnSP-1.0 and UNSP-1.1.......cccoiiiieiriieiiee e 16
1.4.2 ArchiteCture OF UNSP-1.2coiiiiiieieiee s 17
1.4.3 Peripheral Interface of UNSP-1.2........ccccocviiiiieiieseece e 18
1.4.4 Architecture OF UNSP-1.3ooiiiiieieieee e 20
1.4.5 Architecture Of UNSP-2.0ooiiiiiie e 22
1.4.6 Pipeline Feature 0f UNSP-2.0cccooiiiiiiiiece s 23
LD REGISTET ..ttt bbbt b b 24
1.5.1 Register of UnSP-1.0 and UNSP-1.1........cccoveieiiiiiieie e 24
1.5.2 RegiSter Of UNSP=1.2c.coieieiie et 24
1.5.3 RegiSter Of UNSP-1.3 ...t 26
1.5.4 RegiSters Of UNSP- 2.0, ..o e 29
1.8 IMIBIMONY ...ttt r e 31
1.6.1 Memory Map OFf UNSP ... 31
1.6.2 Memory Interface of UNSP-1.2c.cccvoiiiiiiiieiie e 31
1.6.3 Memory Architecture of UNSP-1.3........cccoiiiiiiieiiee e 34
1.6.4 Memory Architecture OF UNSP-2.0.........cccoiiiiiiiiieieie e 36
1.6.5 Memory Interface of UNSP—2.0.........cccoiiiiiiiiiinee e 37
1.7 AAAreSSiNg IMOUEScouiiuiiiiieieieie ettt 43
1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1ccccoveveiieiienn e 43

© Generalplus Technology Inc. PAGE 3 V1.0 November 26, 2007

-

Generalplus unSP_Programmer’s Guide
1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0ccceeeeiieiieie i, 44

1.7.3 9 addressing modes 0f UNSP-1.3.........ccccoiiiiiiiieeeie e 45

L8 INEEITUPES ..ttt n e 46
1.8.1 Interrupts of uNSP-1.0 and UNSP-1.1cccciiiiiiiiiiieeeeee s 46

1.8.2 INterrupts OF UNSP-1.2........coieeeeceee e 47

1.8.3 INterrupts OF UNSP-1.3 . ..ot 51

1.8.4 Interrupts OF UNSP-2.0......cooiiiiii i 54

RS DL L B Y o2 ST PO OPPPP 60

1.10 ALU OPEIatiON TYPES....ccuiiuiiueeiieieiiesiesteste st sieeseenee et sttt sbs e ssesne s b sre e sseaneas 60

1.11 Conditional BranChes..........ccoueiiiiiieisseee s 61

2 UNSP- 1.1 INSEIUCTION SBLviviitiiiiiiieieie et bbb 63
2.1.unSP Instructions ClasSifICAtIONccciiieiiiiieie e 63

0 50 N 0] 7 [o PP OPTRRPRRTN 63

2.1.2 Instruction ClassSifICAtIONccooiiiiiiiie e 64

2.2 UNSP INSErUCTION FOMMALccveeiiiie et 64

2.3 UNSP-1.1 INSTIUCTION SELviuiiieiiiiesii st 66
2.3.1 Data-Transfer INStrUCTIONSccocuiiiiiieieiese e 66

2.3.2 Arithmetic/Logical-Operation INStruCtions...........ccccovevieiieeie i 70

2.3.3 Transfer-Control INStrUCTIONS.coviiiiiiiiere e 85

2.3.4 Miscellaneous INSTFUCTIONS.couiiieieiie et 89

3 UNSP -1.0 INSTFUCTION SELviiiiiiiieiieie ettt sae e nreenne e e 93
3.1 GeNEral DESCIIPLION ...cviiiieiieeie ettt et e e teeaesreesneenee e 93
3.2.UnSP-1.0 INSLrUCtiON CYCIES ...c.vvoviiciiee et 93

4 UNSP -1.2 INSTIUCLION SELiiviiiieiieiieiee ittt sttt bbb enes 105
4.1 UNSP-1.2 INSTIUCTION SELoiveeiiieiiciie sttt 105
4.1.1 Data-Transfer INStrUCLIONScoiveruviieiieieeie e 105

4.1.2 Data Processing INStrUCLIONS.........ccoiiiiieiiieiesie e 108

4.1.3 Data Segment ACCESS INSLIUCLIONc.coverieiieiieie e 128

4.1.4 Transfer-Control INSrUCTIONS.ccuviiieiiiiiese e 129

4.1.5 Miscellaneous INSIIUCTIONS..........ooveiiiiriieiesie e 133

4.1.6 INSLruCtion St SUMIMAIY.........ciuiiieiiiie et sre e 136

5 UNSP-1.3 INSIFUCTION SEL ...ccuviiiieiiieie ettt esteeneesneenne s 138
5.1 UNSP-1.3 INSTIUCTION SELvivviiiitiiiesie st 138
5.1.1 Byte Register INAIFECTc.cccveieeecie e 138

© Generalplus Technology Inc. PAGE 4 V1.0 November 26, 2007

-

Generalplus unSP_Programmer’s Guide
5.1.2 Byte INdeXed AQUIESSccveivieiieiecie st 139

5.1.3 Byte Register Indexed AdAreSS.........oiueerieiieiinie e 139

5.1.4 SPeCial REJISIEr ACCESSc.viiveieiiiiiiieiieie ettt bbb 140

6 UNSP-2.0 INSTFUCTION SEL...ccviiiiiiiieie ettt ste e e e e nee s 143
6.1 UNSP-2.0 INStrUCTION CYCIES.....uieiiiie e 143
6.1.1 Data-Transfer INStrUCTIONScccuviiieieieierie s 143

6.1.2 Data Processing INStrUCLIONS...........ccveiieiieiieii e 144

6.1.3 Data Segment AcCESS INSIIUCTIONcovueiiriiiiiiie e 153

6.1.4 Transfer-Control INStrUCTIONS.coviieriiie e 154

6.1.5 Miscellaneous INSIIUCTIONS.ccviirieiiieiiere s 156

6.2 New Instructions of unSP-2.0 INStruction Set...........cccovvviviiniiiiieiene e 158
6.2.1 Data-Transfer INStrUCTIONScccuiieiiiiiere s 158

6.2.2 Data Processing INStrUCLIONS..........coviiiirieiiesieeieeie e 161

6.2.3 INSLrUCtion SEt SUMMANY........eiiiiiiiie et 170

(TSI = 1 I O] To 11 o] oIS 174

7 Appendix A Difference Between UnSP-1.2 & UNSP- 1.3ccoiiviieiieiiee e 179
8 Appendix B Difference Between unSP-2.0 & UNSP-1.2cccoveieiieiieie e 180
9 Appendix C Comparison Between UNSP VEISIONS.........ccccvveiueieeieerieieeie e seesieeeesaenneas 181
10 Appendix D CPU Cycle Formula and EXampPles.........ccooiririieienienienieie e 183
C.1 unSP 1.2 CYCIE FOrMUIA......c.eiiiiiiie e 183

C.2 UNSP 1.3 CyCle FOIMUIA ..ot 186

C.2 UNSP 2.0 CyCle FOIMUIAccoveivieiecie e 189

© Generalplus Technology Inc. PAGE 5 V1.0 November 26, 2007

unSP Programmer’s Guide

Revision

Date

Revised By

Remark

V1.0

2007/11/26

Summer Yi

Original

© Generalplus Technology Inc.

V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

1 Introduction

1.1 General Description

The unSP, pronounced as micro-n-S-P, is the first 16-bit microprocessor developed by Generalplus.

Not only does the unSP perform general operations such as addition, subtraction and other logical

operations, but it also supports multiplication and inner-product operations for digital signal processing.

Now, the unSP has a series of version named unSP 1.0, unSP 1.1, unSP 1.2, unSP 1.3 and unSP 2.0.

1.2 Pin Diagram

1.2.1 Pin Diagram and Description of unSP-1.2

B Pin Diagram

FREB

C'__'{
EES FDEB
FIQ) WES
IRQ WEEN
DA DL IACE
MEDY CHOLD
HDLEER.C:-}:I ENTA
S, unsp-1.2 LDOF
D S
—_— [™
. iy T
FQe20] |
s .
[ADDR[21:0] >
TEST[L0] 4
L /. ™,
<" DATA15:0]
. I
Figure 1.1
B Pin Description
Table 1.1
Name 1/0 Description Number
CLK INPUT [External clock 1
RES INPUT [External reset 1
FIQ INPUT [Fast interrupt request 1
IRQ INPUT Normal interrupt request 1
IRQS INPUT Normal interrupt request select 3
DMAQ INPUT DMA request 1
MRDY INPUT Memory data ready signal 1
TEST INPUT [Test mode select pins 2

© Generalplus Technology Inc.

PAGE 7

V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

Name 1/0 Description Number

HDUMPROM INPUT Dump internal ROM to memory bus 1
SLEEP INPUT Sleep mode 1
PD INPUT |Power down mode 1

ADDR OUTPUT Address bus 22
PREB OUTPUT |Memory pre-charge signal 1
RDB OUTPUT |Memory read enable signal 1
WEB OUTPUT |Memory write enable signal 1
WREN OUTPUT |Memory accessing mode 1
DMACK OUTPUT |DMA acknowledge 1
CHOLD OUTPUT |CPU stall signal 1
EXTA OUTPUT Access data with DS 1
LDOP OUTPUT [Fetch instruction into CPU 1
INTS OUTPUT |CPU operation mode 4

DATA INOUT |Data bus 16

1.2.2 Pin Diagram and Description of unSP-1.3

M Pin Diagram
(1K PREB
—_— —_—
RES RDB
—_— —_—
FIQ WEB
—_— —_—
EQ WEEN
DMAQ DMACK
— =
MEDY CHOLD
—_— —_—
HDUMPROM EXTA
SLEEP LDOP
ED f 1RE
E— mSP 154 1.2 %
F.AM_UBE
— = -
[RQS[2:0] ADDR_CHANGE_B
[—
STACK_ACCESS
—_—
TESTL:0]
|—L]-> TS 0] >
]N'I_BASE:F}}
ADDR[21:0]
é}amus{%
Figure 1.2
© Generalplus Technology Inc. PAGE 8 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

Pin Description

Table 1.2
Name 1/0 Description Number

CLK INPUT |[External clock 1

RES INPUT [External reset 1

FIQ INPUT [Fast interrupt request 1

IRQ INPUT Normal interrupt request 1

IRQS INPUT Normal interrupt request select 3
DMAQ INPUT DMA request 1
MRDY INPUT Memory data ready signal 1
TEST INPUT [Test mode select pins 2

INT_BASE INPUT |Interrupt vector base address 10
HDUMPROM INPUT Dump internal ROM to memory bus 1
SLEEP INPUT Sleep mode 1

PD INPUT |Power down mode 1

ADDR OUTPUT Address bus 22
RAM_LBE OUTPUT |Upper byte Enable 1
RAM_UBE OUTPUT |Lower byte Enable 1
ADDR_CHANGE_B OUTPUT Address change signal 1
STACK_ACCESS OUTPUT |Indicate that CPU is accessing stack 1
PREB OUTPUT Memory pre-charge signal 1

RDB OUTPUT |Memory read enable signal 1

WEB OUTPUT Memory write enable signal 1
WREN OUTPUT Memory accessing mode 1
DMACK OUTPUT |DMA acknowledge 1
CHOLD OUTPUT [CPU stall signal 1
EXTA OUTPUT Access data with DS 1
LDOP OUTPUT [Fetch instruction into CPU 1

INTS OUTPUT [CPU operation mode 4

DATA INOUT |Data bus 16

© Generalplus Technology Inc. PAGE 9 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

1.2.3 Pin Diagram and Description of unSP-2.0

B Pin Diagram

CLK RESET_B

FIQ_B BUE_FIGHT
IRQ_B LDIR
IRQE[2:0] TEST[1:0]
DATA_ADDR[21:0) INST_ADDR[21:0]
wnEP-2.0
DATA_DO{15:0] IMST_DO[15:0)
DATA_DI[15:0] INST_DI[15:0]
DATA_WE_B INST_WE_B
DATA_RD_B IMST_RD_B
DATA_RDY INST_RDY
Figure 1.3
B Pin Description
Table 1.3
Name 1/0 Description Number
CLK Input |CPU clock 1
RESET B Input |CPU reset 1
FIQ_B Input |Fast interrupt request (level trigger) 1
IRQ_B Input |Interrupt request (level trigger) 1
IRQS Input |Interrupt request source 3
TEST Input [Test mode select 2
INST_ADDR Output |Instruction Bus address 22
INST_DI Input |Instruction Bus data input 16
INST_DO Output [Instruction Bus data output 16
INST_RD_B Qutput [Instruction Bus read enable signal 1
INST_WE_B Output [Instruction Bus write enable signal 1
INST_RDY Input [Instruction Bus ready signal 1
DATA_ADDR Output |Data Bus address 22
DATA_DI Input |Data Bus data input 16
DATA DO Output Data Bus data output 16
DATA_RD_B Output Data Bus read enable signal 1

© Generalplus Technology Inc. PAGE 10 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

DATA_WE_B Output |Data Bus write enable signal 1
DATA_RDY Input |Data Bus ready signal 1
BUS_FIGHT Input |[Instruction Bus & Data Bus access same 1

LDIR Output Load next instruction 1

1.3 Features

1.3.1 Features of unSP-1.0 and unSP-1.1

B 16-bit micro controller with DSP function
B Memory bus interface
® Address width: 22-bit
® Data width: 16-bit
® 4M words (8M bytes) memory space
® 64 banks/ 64k words per bank
B 8"16-bit registers
® 4 general registers (R1~R4)
® 4 system registers (SP, BP, SR, PC)
®m 10 interrupts
® 1 fastinterrupt (FIQ)
® 8 normal interrupt (IRQO-IRQ7)
Software interrupt (BRK)

B 6 addressing modes
® Register Direct(R)
® Register Indirect ([R])
® |Immediate (IM6/IM16)
® Memory Absolute Address ([A6]/ [A16]/

[A22]) Indexed Address ([BP+IM6])
® PC Relatively (PC+IM6)

® 16-bit multiplication
® 2 operation modes: signed*signed, unsigned*signed
® 16-levels inner product operation
® 2 operation modes: signed*signed, unsigned*signed

® 4 guard bits to avoid overflow

Difference between unsp -1.0 and unSP- 1.1
UnSP - 1.1 is an enhanced version of unSP -1.0. The behaviors of CS and DS registers are changed to

facilitate large program execution and large data access.

© Generalplus Technology Inc. PAGE 11 V1.0 November 26, 2007

G

Generalplus UnSP Programmel”s GU|de

Table 1.4

UnSP 1.0 unSP 1.1

The target address is
limited in current page [The target address can be any address in the
GOTO instruction o
(16-bit, implemented 4M words memory (22-bit).

as PC=target_addr).

1. New feature

2. During program execution, PC will be
incremented by one continuously. If a carry

N/A takes place, CS will be incremented by one.

auto-increment/decrement 3. Branch instruction versus PC is based on

the combination of CS and PC. The result

will be stored back to the CS and PC.

CS register

1. New feature.

2. In indirect addressing mode, if the D:[++Rs] /
DS register D:[Rs++] / D:[Rs--] are used, these

N/A operations are executed based on the 22-bit
register arithmetic and the final result is
stored back to DS and RS.

auto-increment/decrement

Generally speaking, most instruction cycles are

Instruction cycles Longer faster than unsP 10.

1.3.2 Features of unSP-1.2

B 16-bit micro controller with DSP function
B Memory bus interface
® Address width: 22-bit
® Data width: 16-bit
® 4M words (8M bytes) memory space
® 64 banks/ 64k words per bank
® 13*16-bit registers
® 4 general registers (R1~R4)
® 4 secondary registers (SR1~SR4)
® 4 system registers (SP, BP, SR, PC)
® 1 flag register (FR)
B 10 interrupts
® 1 fastinterrupt (FIQ)
® 8 normal interrupt (IRQO0-IRQ7)
® Support IRQ nested mode with user customized priority

Software interrupt (BRK)

B 6 addressing modes
® Register
® Immediate

[) Direct

© Generalplus Technology Inc. PAGE 12 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

) Indirect
) Multi-indirect

® Displacement

B 16-bit multiplication
® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned
® Integer/Fraction mode
B 16-levels inner product operation
® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned
® Integer/Fraction mode
® 4 guard bits to avoid overflow
B Non-restoring Division
® 32-bit dividend and 16-bit divisor
® Need 16 continuous operations (DIVS, DIVQ) to generate correct quotient
B Bit-operation
® Bit test/ set/ clear/ inverse operation
® Destination can be register or memory
W Effective-exponent detect operation
B 16-bit shift operation
Support 32-bit shift operation by combining 2 shift instructions
B Support DMA function

W Support power down/sleep mode

1.3.3 Features of unSP-1.3

The most significant difference between unsP 1.2 and unSP 1.3 is the byte addressing modes in
unSP1.3.

B 16-bit micro controller with DSP function

® Memory bus interface
Address width: 22-bit

Data width: 16-bit
4M words (8M bytes) memory space

64 banks/ 64k words per bank

Byte accessing-mechanism with new addressing mode
®m 14*16-bit and 1*6-bit registers

® 4 general registers (R1~R4)

® 4 secondary registers (SR1~SR4)

® 6 system registers (SS, MDS, SP, BP, SR, PC)

® 1 flag register (FR)
® 10 interrupts

© Generalplus Technology Inc. PAGE 13 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

1 fast interrupt(FIQ)
8 normal interrupt(IRQO-IRQ7)

Support IRQ nested mode with user customized priority

Software interrupt (BRK)

o O e o0

ddressing modes
Register
Immediate

Direct

9
°
°
°
® |ndirect
® Multi-indirect
® Displacement
® Byte register indirect
® Byte indexed address
® Byte register indexed address
B 16-bit multiplication

® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

® Integer/Fraction mode
B 16-levels inner product operation

® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

® Integer/Fraction mode

® 4 guard bits to avoid overflow
B Non-restoring Division

® 32-bit dividend and 16-bit divisor

® 16 continuous operations (DIVS, DIVQ) or only one operation (DIVSS, DIVUU) to generate

correct quotient.

B Bit-operation

® Bit test/ set/ clear/ inverse operation

® Destination can be register or memory

® 2 address mode (direct, indirect) for memory access.
W Effective-exponent detect operation
W 16-bit shift operation

Support 32-bit shift operation by combining 2 shift instructions

Support DMA function

B Support power down/sleep mode

1.3.4 Features of unSP-2.0

| 16-bit micro controller with DSP function

© Generalplus Technology Inc. PAGE 14 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

unSP 1.2 binary compatible

Modified Harvard architecture

Instruction memory bus (IM): addr: 22-bit / data: 16-bit
64 banks / 64k words per bank

Data memory bus (DM): addr: 22 bits / data: 16-bit
64 banks / 64k words per bank
m 2 configurations
® |M/DM share 4M words memory space (default)
® |M/DM own separate 4M words memory space (Not recommended. Assembler and linker do
not support overlapped address of IM and DM.)
B 4-stage pipelined architecture
® |F (Instruction Fetch)

® DE (Decode)
® MR (Memory Read Access)

® EX/MW (Execution/Memory Write)
B 21*16-bit registers
4 general registers (R1-R4)
4 secondary-bank registers for interrupt (SR1-SR4)

°

°

® 1 base address register (BP)

® 3 system registers (SP, SR, PC)

® 1 inner flag register (FR)

® 8 extended registers (R8-R15)
®m 10 interrupt sources

® 1 fastinterrupt (FIQ)

® 8 normal interrupts (IRQ)

® 1 software interrupt (BRK)

® Support IRQ nested mode with priority
B 6 addressing modes

® Register
Immediate (16/116)
Direct (A6/A16)

Indirect + auto indexing address (DS indirect)

Displacement (BP+IM6)
Multiple indirect (PUSH/POP)

H 16-bit multiplication
® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

® Integer / Fraction modes

© Generalplus Technology Inc. PAGE 15 V1.0 November 26, 2007

-
Az

Generalplus

unSP Programmer’s Guide

16-levels inner product operation

® 1 cycle MAC (multiplier/accumulator) unit

® 3 operation modes: signed*signed, unsigned*signed, unsigned*unsigned

® 4 guard bits to avoid overflow
® Integer/ Fraction modes
Non-restoring division
® 32-bit dividend and 16-bit divisor
® Need 16 continuous operations (DIVS, DIVQ) to generate correct quotient
Effective-exponent detect operation
Bit operations
® Support 4 operations: test, set, clear, inverse.
® Destination can be register or memory.
® 2 address mode (direct, indirect) for memory access.
16-bit shift operation
® 1 cycle log-shifter

® Support 32-bit shift operation by combining 2 shift instructions.

1.4 Architecture

1.4.1 Architecture of unSP-1.0 and unSP-1.1

The design goal of unsP 1.0 and unSP 1.1 is to achieve high performance with low cost. It uses the

traditional multi-cycle architecture. The organization of unSP 1.0 and unSP 1.1 is illustrated as below. The

principal components are:

The general registers (R1-R4) and the system registers (SP, BP, SR, PC) in the register bank.

The data register (DR), which store the data.

The address generator unit (AGU), which selects and holds all memory address and generate

sequential address when required.
The shifter, which can shift or rotate one operand by any number of 4-bit.

The ALU, which performs the arithmetic and logic functions required by current instruction.

© Generalplus Technology Inc. PAGE 16 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

Data Bus

;
{
E%Eﬁﬁ

16

R 16

| User Register

P SP: Stack Pointer

R R1~R4: User Pointer

BP: Base Pointer

SR: Status Register
MNZSC: Flags
0S: Data Segment
CS: Code Segment

PC: Program Courter
SB: Shift Buffer (User / FIQ/ IRQ)

Interval Register
DR: Data Register
BR: B-Regster
Hardware Unit

ADDRGEN: Address Generator
SHFTER: Shifter

Address Bus

+.|-'|\1

ADDRGEM

ALLE Arthmetic & Logic Unit

15 109 65 0
N ,-»lDSlNZSClCB
SR

Figure 1.4

1.4.2 Architecture of unSP-1.2

The design goal of unSP 1.2 is to achieve high performance with low cost. It uses the traditional

multi-cycle architecture. The organization of unSP 1.2 is illustrated as below. The principal components

are:

The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4
secondary bank registers (SR1-SR4), 4 system registers (SP, BP, SR, PC) and 1 flag register (FR) in
the register bank.

The instruction register (IR), which store the current instruction fetched from data bus. The decoder
will generate all control signals for data path according to the instruction register.

The data register (DR), which store the second word of current instruction if instruction length is 2
words.

The address generator unit (AGU), which selects and holds all memory address and generate

sequential address when required.

The shifter, which can shift or rotate one operand by any number of 4-bit.

The ALU, which performs the arithmetic and logic functions required by current instruction.

© Generalplus Technology Inc. PAGE 17 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide
] | | !]
nk
r k. E
(MR) (PR) o
=
Shifter
>
= ||
(=
A k 4 L J
N NS é -
A=
BR (AR)(GR)
¢ i - =g
NS E
o
ALU
B aCO[2:0] aDO[15:0] a
Figure 1.5

1.4.3 Peripheral Interface of unSP-1.2

® DMA Timing

clk T o e e Lk
addr[21:0) Jfa?] fabg \ halha] bglht | T%a |
dataliS:0] fBT H— Mea | alba | alfbh] B
preb . LI [L
rdh | I [
mzh
e | |
MEDT
Dl I |
DACK | |
> € >
Tonea DMA Time
Figure 1.6

© Generalplus Technology Inc. PAGE 18 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

DMAQ: DMA request, active high.

DMACK: when CPU accept DMA request from DMAQ, it will reply DMACK signal and release

address, data bus, preb, web, rdb, wren signals after last memory access.

The longest delay without memory waiting cycle from DMAQ request to DMACK reply Tpua<= 3

clock cycles (max cycles for instruction to access memory)

®m SLEEP Timing

clk
(H

-

(LT

AENERERERERE)
LU

addr [21 0]
datal15. 0]
preb
rdb

AN

toe 1

N

B —o zhed

el
B
|

]
|
|

!
!
|
|

] L
I B

b
TEn

SLIER

F Y

SLEEP request

L J

CK: CPU internal clock.

SLEEP time

Figure 1.7

SLEEP will stall the CPU clock at high and keep address, data, preb, rdb, web, wren at

origin value.

B PD (Power Down) Timing

" pERliEERN nigipinin
addr[21:0] | 906 [EET) 20) [mT | o
data[15:0) | 50 —H | 0 N T N &0 —{ ahed
preb | [L L
rdb | | |' 'ﬂ | |
web ' '
WLEL [1
BD |
B >
PD request
h PD Time -
Figure 1.8
© Generalplus Technology Inc. PAGE 19 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

PD will stall the CPU clock at high and release the address, data bus, preb, rdb, web, wren signals.

® HDUMPROM Timing

elk
aldr[21:0|
data[15:0]
peeb

rih

vED

WLEN

T83

B0

o] Wy | 0 | L | ¢ | 1 y :
—{ed—]] (T2 {578 —{Jabe | wa

|_
_

4] |
[B A
| L L1 L |

N

Dump Memory

L J

Figure 1.9
HdumpROM is used to dump memory content from current address. If you want to dump all
memory content to data bus, you can use RESET and HdumpROM signal. After reset and keep
HdumpROM at high, the memory content from 0x000000 ~ 0x3FFFFF will be dumped to memory

bus contiguously every 2 cycles.

1.4.4 Architecture of unSP-1.3

The design goal of unSP 1.3 is to achieve high performance with low cost. It uses the traditional

multi-cycle architecture. The organization of unsP 1.3 is illustrated as below. The principal components

are:

The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4
secondary bank registers (SR1-SR4), 6 system registers (SS, SP, MDS, BP, SR, PC) and 1 flag
register (FR) in the register bank.

The instruction register (IR), which store the current instruction fetched from data bus. The decoder
will generate all control signals for data path according to the instruction register.

The data register (DR), which store the second word of current instruction if instruction length is 2
words.

The address generator unit (AGU), which selects and holds all memory address and generate
sequential address when required.

The shifter, which can shift or rotate one operand by any number of 4-bits.

The ALU, which performs the arithmetic and logic functions required by current instruction.

© Generalplus Technology Inc. PAGE 20 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

< AGU egister
Bank
=
IR D o
(CoR) 2
Sh'i:l:er R
ifter ER
> =
g \ 4 o
A 4 y
N DN i]
2
+ y * v
(BR) (AR J(CR)
‘ : g
NS E
é
ALU
i aCoOJ[2:0] aDO[15:0]]
Figure 1.10
© Generalplus Technology Inc. PAGE 21 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

1.4.5 Architecture of unSP-2.0

unSP—2.0 is a 4-stage pipeline architecture. Its organization is illustrated as below. The principal

components are:

B The register bank, which stores the processor state. There are 4 general registers (R1-R4), 4
secondary bank registers (SR1-SR4), 4 system registers (SP, BP, SR, PC), 8 extend registers
(R8~R15) and 1 flag register (FR) in the register bank.

B The instruction register (IR), which stores the current instruction fetched from instruction bus. The
decoder will generate all control signals for data path according to the instruction register.

® The parameter register (PR), which stores the second word of current instruction if instruction

length is 2 words.

® The instruction address generator unit (IAG), which selects and holds all instruction address

and generate sequential address when required.
® The data address generator unit (DAG), which generate and hold all data address.
® The Shifter, which can shift or rotate one operand by any number of 4-bit.
® The ALU, which performs the arithmetic and logic functions required by current instruction.

® The MAC, which performs the multiplication and accumulate functions required by current
instruction.
Fetch Decode Memory Read Execution / Memory Write

8 [5l &
HEEE

_ADDR

»| (DAG_ADDR R) | ADDER |(q
F 3 <
™\
- ofG)
g Eln
= —
= ./ ./
{ 1ac_aoDR é Y
: 3 > &)
IAG_DI é __/ > ml
<)] (o™ e
meroy |2) il \ —»(2
— w > O = » L &
e e n p_/ &
0 : L] =/
- gl 1 (@
— < . él o) NPT
Y W) e M > < d §
m L Ll
4 = E
—> 2
A
Figure 1.11

© Generalplus Technology Inc. PAGE 22 V1.0 November 26, 2007

unSP Programmer’s Guide

1.4.6 Pipeline Feature of unSP-2.0

unSP 2.0 employs a simple 4-stage pipeline with the following pipeline stages:
m Fetch:
The instruction is fetched from memory and placed in the instruction registers.
B Decode:
The instruction is decoded and the data-path control signals prepared for the next cycle. If current
instruction needs to read data from memory, the access address will be generated and issued in

this stage.

B Memory Read:
Waiting state for memory read access. If current instruction needs performing shift operation, it will be

done in this stage.

m Execution / Memory Write:
All ALU operations, multiplication are executing in this stage and the result will be write back to
register or memory at the next cycle, if current instruction need to write data to memory, the access

address will be generated and issued in this stage.

At any one time, four different instructions may occupy each of these stages

e LU L LT L L LT

H I | | I
I [1 n]
N [FO[DEJIWR] 5 5 : E
I ! 1 1 n]
o P MR [TEX] | | i i
i i | T g DE JI MR][EX] ! i
N2 : : |- | oE |{ WR][BX i i
NG i : [F] oe [wr [ex |t
i i i ! ! | !
LN R i
: : : i i i i

unSP-2.0 can execute 4 instructions in parallel

Instruction Fetch
Instruction Decode

Memory Read
Instruction Execution or Memory Write

Figure 1.12

© Generalplus Technology Inc. PAGE 23 V1.0 November 26, 2007

unSP Programmer’s Guide

1.5 Register

1.5.1 Register of unSP-1.0 and unSP-1.1

unSP 1.0 and unSP 1.1 have eight 16-bit registers: Stack Pointer (SP), User Registers (R1, R2, R3, R4),
Based Pointer (BP), Status Register (SR) and Program Counter (PC). Please see Table 1.5 for details.
The concatenation of R3 and R4 forms a 32-bit register, MR, which is used as the destination register
for multiplication and inner-production. The Stack Pointer (SP) automatically increases (POP) or
decreases (PUSH) as the unSP performing push/pop, subroutine call or interrupt operations. The stack
size is limited to 64K, i.e., 0x000000 ~ 0xO0FFFF. Since unsP 1.0 and unSP 1.1 are able to address
4M-word locations, additional 6 bits are needed to construct a 22-bit address from a 16-bit register for
fetching instructions (OP codes) and data accessing purposes. These 6 bits reside in the SR register,
which contains the Code Segment (CS) and the Data Segment (DS) fields. Therefore, both code
addresses and data addresses can be represented in 22 bits.

In unsSP 1.0, the value in CS will not be changed by sequential execution and conditional branch when
crossing page boundaries. This behavior limits each code section cannot be larger than 64K words. Only
call instruction and interrupts can change CS. The DS will not be changed by pre-increment addressing,
post-increment addressing and post-decrement addressing modes. This behavior limits each data section
cannot be larger than 64K words. For example, suppose CS is 0x03 and PC is OxFFFF, the next
instruction fetched by the unSPis located at CS:PC = 0x030000, not 0x040000.

In unSP 1.1, the content of total 22 bits formed by CS or DS and a register will be changed accordingly

when crossing page boundaries. Thus the 64K limitation is removed.

Table 1.5 unSP 1.0 and unSP 1.1 Registers

Register ID Name
0 (000) SP
1 (001) R1
2 (010) R2
3 (011) R3
4 (100) R4
5 (101) BP (R5)
6 (110) SR
7 (111) PC

1.5.2 Register of unSP-1.2

Registers Bank

unSP 1.2 adds 4 registers (SR1~SR4) for interrupt service routines to reduce the push/pop effort.
User can use SECBANK On/Off instruction to switch register bank. If SECBANK mode is on, all

© Generalplus Technology Inc. PAGE 24 V1.0 November 26, 2007

G

Generalplus UnSP Programmel”s GU|de

access to R1~R4 will be redirected to SR1~SR4. The other registers, SP, BP, SR, PC and FR,
are not affected by the SECBANK On/Off instruction.

FRIBANK SECBANE

a0 SPe a0 i
il Rle il SR1e
010, e i SR1e
011, R3~ i1 SR3¢
100 R4 it SR
101 BP- 101 BP-
110 SR 110 SR«
m PCe 111 PCe

| FR | [FR |

Figure 1.13

® Primary Bank
¢ Stack Pointer (SP)
¢ General Register (R1~R4)
¢ Base Pointer (BP)
¢ Status Register (SR)
¢ Program Counter (PC)
¢ Flag Register (FR)
® Secondary Bank

¢ Secondary Register (SR1~SR4)

B Status Register (SR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

DS N Y4 S C Cs

® Conditional Flag

¢ N: Negative flag, denotes the 16th bit of ALU result.

. Z: Zero flag, denotes whether the ALU result is zero.

¢ S: Sign flag, denotes the MSB(18th) bit of ALU result.

¢ C: Carry flag, denotes the 17th bit of ALU result
® Data Segment (DS)

+ Data segment can be used to access memory large than 64K words memory space
® Code Segment (CS)

¢ Code segment can be used to fetch instruction location large than 64K words memory

space

¢ Code segment and Data segment will be updated automatically when the target address

© Generalplus Technology Inc. PAGE 25 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

crossing segment boundary.

m Flag Register (FR)

F E

D C B A 9 8 7 6 5 4 3 2 1 0

- | AQ

BNK | FRA | FIR SB FIQ | IRQ | INE PRI

AQ: DIVS/DIVQ AQ flag, default is 0.
BNK: Register bank, default is 0 (PRIBANK).
FRA: Fraction mode, default is 0 (OFF).
FIR: FIR move mode, default is 0 (FIR_MOVE ON).
SB: Shift buffer/guard bits, default is 4’b0000.
FIQ: FIQ Enable, default is 0 (Disable)
IRQ: IRQ Enable, default is 0 (Disable)
INE: IRQ nest mode, default is 0 (OFF)
PRI: IRQ priority register, default is 4’1000 after reset. If IRQ nest mode is On and any IRQ
occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service routine.
Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest behavior by
setting the priority register.
Priority: IRQO > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7
Note: FIQ still has highest priority than any IRQ if FIQ is enabled.
For example:
. If PRI is 4’b1000, IRQO-7 are enabled
* If PRI is 4’b0000, IRQO-7 are disabled
. If IRQ3 occurred, PRI will be set to 0011. Only IRQ0-2 are enabled.

1.5.3 Register of unSP-1.3

B Registers Bank

As unSP 1.2, unSP 1.3 contains 4 registers (SR1~SR4) for interrupt service routine to reduce the

push/pop effort. User can use SECBANK On/Off instruction to switch register bank. If SECBANK

mode is on, all access to R1~R4 will be redirected to SR1~SR4. The other registers, SP, BP, SR,

PC,

FR, SS and MDS, are not affected by the SECBANK On/Off instruction.

© Generalplus Technology Inc. PAGE 26 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

PRIBANK SECBANK

00g SP e SP
001 R1 w1 SR1
010 R2 610 SR2
01 R3 o1 SR3
100 R4 14 SR4
101 BP 1 BP
110 ;]é 110 glé
m g m
FR FR
S8 SS
MDS MDS
Figure 1.14
Primary Bank
¢ Stack Pointer (SP)
¢ General Register (R1~R4)
¢ Base Pointer (BP)
¢ Status Register (SR)
¢ Program Counter (PC)
¢ Flag Register (FR)
¢ Stack Segment Register (SS)
¢ Inner Product Operation Data Segment (MDS)

Secondary Bank

*

Secondary Register (SR1~SR4)

B Status Register (SR)

F

E

D

C B A 9 8 7 6 5 4

DS N z S C

Cs

Conditional Flag

*

*

*

*

N: Negative flag, denotes the 16th bit of ALU result.

Z: Zero flag, denotes whether the ALU result is zero.

S: Sign flag, denotes the MSB(18th) bit of ALU result.

C: Carry flag, denotes the 17th bit of ALU result

Data Segment (DS)

L4

Data segment can be used to access memory large than 64K words memory space

Code Segment (CS)

L4

Code segment can be used to fetch instruction location large than 64K words memory

© Generalplus Technology Inc. PAGE 27

V1.0 November 26, 2007

unSP Programmer’s Guide

space
¢ Code segment and Data segment will be updated automatically when the target

address crossing segment boundary.

B Flag Register (FR)

F E D C B A 9 8 7 6 5 4 3 2 1 0
AdE | AQ | BNK | FRA | FIR SB FIQ | IRQ | INE PRI
® Ade: Byte-mode instruction address alignment error.
e AQ: DIVS/DIVQ AQ flag, default is 0.
® BNK: Register bank, default is 0 (PRIBANK).
® FRA: Fraction mode, default is 0 (OFF).
® FIR: FIR MOVE mode, defaultis 0 (FIR Move On).
® SB: Shift buffer/guard bits, default is 4’b0000.
® FIQ: FIQ Enable, default is 0 (Disable)
® |RQ: IRQ Enable, default is 0 (Disable)
® INE: IRQ nest mode, default is 0 (OFF)
® PRI: IRQ priority register, default is 4'b1000 after reset. If IRQ nest mode is On and any

IRQ occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service
routine. Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest

behavior by setting the priority register.
Priority: IRQO > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

Note: FIQ still has highest priority than any IRQ if FIQ is enabled.

For example:

¢ IfPRIlis 4b1000, IRQO-7 are enabled

¢ If PRI is 4b0000, IRQO-7 are disabled

+ IfIRQ3 occurred, PRI will be set to 0011. Only IRQ0-2 are enabled.

B Stack Segment Register

The stack segment register (SS) is added to expand the size of stack. The size of SS is 6 bits. After reset,

all bits of SS are cleared to be zero. The behavior of following stack related operations are changed.

PUSH Ru, Ru to [Rs]
The destination where Ru - R are pushed in a 22-bit address: {SS:Rs}21-0. That is, higher 6
bits in SS and lower 16 bits in Rs. After the push operation, {SS:Rs}21-0 is decremented by the

number of registers pushed.
POP RL, Rx from [Rs]

Increment {SS:Rs}21-0 by 1. Move the content at {SS:Rs}21-0 to Rx. Increment {SS:Rs}21-0 by
1.Move the content at {SS:Rs}21~0 to R. +1. Repeat these operations (R« — R. + 1) times.

The effective address of [BP+n] addressing mode

© Generalplus Technology Inc. PAGE 28 V1.0 November 26, 2007

unSP Programmer’s Guide

The effective address is {SS:Rs}21-0 +n. Move the content at {SS:Rs}21-0 to Rx. Increment
{SS:Rs}21-0 by 1.Move the content at {SS:Rs}21-0 to R. +1. Repeat these operations (Rx —
RL + 1) ti mes.
If SS is zero, the behaviors of these operations are the same as before.
Inner Product Operation Data Segment Register (MDS)
F E D C B A 9 8 7 6 5 4 3 2 1 0

0 0 SEG of Rd 0 0 SEG of Rs

Inner product operation data segment (MDS) are added to specify the page numbers of the

two sources, Rd and Rs.

The data of the two sources can cross the page boundary. When doing the MULS operation, the Rd
and Rs will be added one by one. The carry signal will propagate to these MDS. This causes that

the MDS are added by one when the value of Rd and Rs change from OxFFFF to 0x0000.

1.5.4 Registers of unSP- 2.0

Normal mode
There are 3 system registers (SP, SR, PC), 4 general registers (R1~R4) and 1 flag registers (FR)

can be used in normal mode for user program operation.

Registers Bank
4 secondary bank registers (SR1~SR4) are added for interrupt service routines to reduce the
push/pop effort. User can use SECBANK On/Off instruction to switch register bank. If SECBANK

mode is on, all access to R1~R4 will be redirected to SR1~SR4.

Extend Registers
unSP 2.0 add 8 extend registers (R8~R15) to reduce register swapping effort while executing
complicity operations to improve performance, 8 extend instruction types are also added to do ALU
operation between extend registers and memory or original registers sets (R0O~PC).

® Primary Bank
+ Stack Pointer (SP)

¢ General Register (R1~R4)

¢+ Base Pointer (BP)

+ Status Register (SR)

¢ Program Counter (PC)

¢+ Flag Register (FR)

¢ Extend Register (R8~R15)
® Secondary Bank

¢ Secondary Register (SR1~SR4)

© Generalplus Technology Inc. PAGE 29 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

SP SP
R1 SRl
R2 SR2
R3 SR3
R4 SR4
BFP BFP
SR SR
PC PC
RS RS
R9 R9
R10 R10
R11 R11
R12 R12
R13 R13
R14 R14
R15 R15
[FR | [FR |
Figure 1.15

B Status Register (SR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

DS N 4 S C CSs

® Conditional Flag
¢ N: Negative flag, denotes the 16th bit of ALU result.
¢ Z: Zero flag, denotes whether the ALU result is zero.
¢ S: Sign flag, denotes the MSB(18th) bit of ALU result.
¢ C: Carryflag, denotes the 17th bit of ALU result
® Data Segment (DS)
+ Data segment can be used to access memory large than 64K words memory space
® Code Segment (CS)
¢ Code segment can be used to fetch instruction location large than 64K words memory
space
® Code segment and Data segment will be updated automatically when the target address

crossing segment boundary.

B Flag Register (FR)

F E D C B A 9 8 7 6 5 4 3 2 1 0

- | AQ | BNK | FRA | FIR SB FIQ | IRQ | INE PRI

© Generalplus Technology Inc. PAGE 30 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

® AQ: DIVS/DIVQ AQ flag, default is 0.
® BNK: Register bank, default is 0 (PRIBANK).

® FRA: Fraction mode, default is 0 (OFF).

® FIR: FIR MOVE mode, default is 0 (FIR Move On).
® SB: Shift buffer/Guard bits, default is 4’00000.

® FIQ: FIQ Enable, default is O (Disable)

® |RQ: IRQ Enable, default is 0 (Disable)

® INE: IRQ nest mode, default is 0 (OFF)
® PRI IRQ priority register, default is 4’1000 after reset. If IRQ nest mode is On and any IRQ
occurred, PRI register will be set as the IRQ priority before CPU executing IRQ service routine.
Only the IRQ with higher priority can interrupt it. User can customize the IRQ nest behavior by
setting the priority register.
Priority: IRQO > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7
Note: FIQ still has highest priority than any IRQ if FIQ is enabled.
For example:
¢ IfPRIis 4b1000, IRQO-7 are enable
¢ If PRI is 4b0000, IRQO-7 are disable

¢ IfIRQ3 occurred, PRI will be set to 0011. Only IRQO0-2 are enable.

1.6 Memory

1.6.1 Memory Map of unSP

The address map of unSP is divided by every 64K words (64K x 16 bits), called a page. The first page,
PAGEDQ, corresponds to A[21:16]=0. The 4M-word (4096K) memory can be divided into total of 64 pages
by A [21:16]=0x00 ~ 0x3F. The selection of page is defined by either a 6-bit Code Segment (CS) or 6-bit
Data Segment (DS) in Status Register (SR), depends on execution opcode fetching or data accessing
respectively. In memory mapping, PAGEQ is designed for storing data that is frequently accessed, e.g.
working memory or peripherals. The other pages (non-zero pages) are designed for storing program
codes or large chunk of data.

1.6.2 Memory Interface of unSP-1.2

The memory interface of unSP 1.2 is an asynchronous interface. Whenever the address transits, the
pre-charge (preb) signal will be pulled low 1 cycle to indicated the memory access and the read enable
signal (rdb) or write enable signal (web) will be pulled low at next cycle. The CPU may really need data at
the second or third cycle after the address transits, so the rdb may be kept 1 cycle or 2 cycles low while
reading memory. If the memory bus is not ready for CPU accessing, the memory ready signal (MRDY)
must be pulled low to stall CPU accessing before the clock rising edge of rdb or web access cycle.
Besides the rdb and web signals, there is an additional signal (wren) indicating the memory read/write

accessing within full memory access period. The detail timing diagrams are illustrated as below.

© Generalplus Technology Inc. PAGE 31 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

B Memory read timing without CPU waiting (2 cycles)

o1k N s [s [s A O e
addr|21.0] Fah([Tl2a | Fabl ;
data|15.0] f—— T0Za Sedd

preh | [I I N R
1t | 1 I S N

il
VLEN - .
MELDTE read cycle
) CPU memory]
Figure 1.16

B Memory read timing without CPU waiting (3 cycles)

addc[2L:0] ff | Fabl !

data[15:0] Mk —
preb o I S
rdb

web
HEED
RIY B —
read cycle
CPU memory '
Figure 1.17

B Memory read timing with CPU waiting (2 cycles)

© Generalplus Technology Inc. PAGE 32 V1.0 November 26, 2007

Generalplus unSP Pngrmnnmr% Guide

i I
addr [21:0] A | T x

datal15.0] ' 3

preb : |
rdh E :

oLk [e R e R

nad

weh

WLED

MEDY

CHOLD [

<—>
waiting cycle = read cycle

CPU memory

1
1
1
1
N
Ll
1
I
I
I

Figure 1.18

B Memory write timing without CPU waiting

clk | | | | | | | L______J__

e [21:0] Fa | 0 ! Fash 1

fata[15:0] T B N

preb I L
|

cdh

web
wren | |
MRDY
.«
write cycle

.
™

&

CPU memory

Figure 1.19

® Memory write cycle with CPU waiting

© Generalplus Technology Inc. PAGE 33 V1.0 November 26, 2007

unSP Programmer’s Guide

.

1000

i LU 1]
addr [21:0] b3 . | |
data[15:0]

I{_lr
—
—

96

rdh : |
eh ! : | ! |
] T
WLEn : ‘ : | |
MRDY B : I : s
CHOLD 5 ; ; [
|] 1
' ————}
! ' waiting cy¢le write cycle
[P . | !
v L]
: CPU memory |
Figure 1.20 I
WEB: Memory write enable, changes at clock rising edge, active low.
RDB: Memory read enable, changes at clock rising edge, active low.
PREB: Memory pre-charge signal, changes at clock rising edge, active low.
WREN: Memory write signal, changes within full memory access period, active high.
MRDY: Memory bus ready signal, triggered by external device, must be stable before the clock rising

edge of read/write cycle.
CHOLD: CPU internal stall signal.

1.6.3 Memory Architecture of unSP-1.3

The memory interface of unSP 1.3 is an asynchronous interface. Two cycles are needed for CPU to
access memory without external memory wait. At the first cycle, the pre-charge (preb) signal will be pulled
low 1 cycle to indicate memory accessing and the read enable signal (rdb) or write enable signal (web)
will be pulled low at next cycle. If the memory bus need more cycles to prepare data, the memory bus
ready signal (MRDY) should be pulled low to stall CPU accessing before end of read or write cycle.
Besides the rdb and web signals, there is an additional signal (wren) indicating the memory read/write
accessing within full memory access period. ADDR_CHANGE_B indicates the changing of memory
address. Byte mode signals RAM_LBE and RAM_UBE enable the lower byte and upper byte access,

respectively. The detail timing diagrams are illustrated as below.

M Memory read timing

© Generalplus Technology Inc. PAGE 34 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide
=\ O\ O\ o o o
ADDR Ay A C
A]])R_G-IANGE_B_ N
RAMIBE
RAM_UBE -
s 4 T
- -
RDB a2
m R
WREN _\ &8
MRDY \ / B
€ e N :wajtingcyde‘ .
read access
. + omory 20 » < ormory 0o »

Figure 1.21

] Memory write timing

© Generalplus Technology Inc. PAGE 35 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide
=\ N\ O\ S S S S
ADDR AJ Ay C

AUILGIM_B_ N
RAM LBE S
RAM_UBE o
s ——C 0 -
- -
RDB L
WEB '
WREN- -
MRDY \ / -
- > ‘-\-valitﬁmm\:‘he>
wiite aocess . >
wiife acoess
FE—— > < FE— >
Figure 1.22

1.6.4 Memory Architecture of unSP-2.0

unSP 2.0 uses a modified Harvard architecture to accelerate memory access. The memory bus is
separated into 2 parts, instruction and data bus. Program executing address is issued at instruction bus
and data access address is issued at data bus.

The memory mapping of a real chip may be divided into several parts including internal memory, external
memory, 1/0O memory, ... etc. A memory controller customized by the user is need to manage the

memory bus allocation.

© Generalplus Technology Inc. PAGE 36 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

Dt MMamory(RAR)

-

1
@ = n E

.
Eg |5 E

o . - - .

e =, - ™
|'"I dntm Blemor v R ORI D 'I F IS T Ml ermeors RO -I
5 Chan- Ol K L Chiar-C il i
. . Py

; = n = ES S

.] -

o E

BAEN |

Mlermory ontrol ler
Lamia B |

5 2
E ; z
u .
g 5 5
2 =

Ragistars

Drecoder

l

He=nd

Figure 1.23

1.6.5 Memory Interface of unSP-2.0

® Instruction Bus Read Timing

N Y aVaVaVala

[NST_ADDE Andl

X An

\/

An+ }“\ a.n-

o

X

[NST_RD_B

WD

INST_RDY f : l

Read Cyele Fesch D to CPU

© Read Stall of Fetch D2 th CPL
Antl

Figure 1.24

© Generalplus Technology Inc.

PAGE 37

V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

M Data Bus Read Timing

F\ /_L/_
DATA_ADDR >< An X AnJ;rl X Anl X A'f+3 X:
DATA_DI XX)0(

DATA_RD_B
DATA_RDY W
Ed—li: ! : — |
" ReadCycle ° Feich Dinto CPU 1 " ReadStallof ' Fetch Dn+2to CPU

Amt2

Figure 1.25

® Data Bus Write T|m|ng

ax _/__/ _/ L/_\J_\J _/
DATA_ADDR X An X An+1 X e X AM X:
DATA_DO XX)O(X>—<X o XX Dm >0<

DATA_RDY

i H d—ﬁ
Write Cycle : : " Write Stall of *
Ant?

Figure 1.26

B INST Bus and Data Bus Access Conflict Timing

© Generalplus Technology Inc. PAGE 38 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

INST_ADDR A k & >/ _,.mg_-_ \ e
INST DI \O/ /O< | - .’

INST RD T Fetch INST_DI inte CPU
ST _RD_B h :

INST_RDY

DATA ADDR Y/

>< Zn- 1 >< [1':*;+Z
DATA DI >O/ /<>\ DDq \;O< DDn+1

DATA_RD_B \ / \

DATA_RDY

INS Bus access same Stall INST Bus by pull-up Fewh DATA_DI inta CPU ,
’ . BUS_FIGHT at next cycle DDn must keep on dita bus
the Data Bus will have higher priority untl this clock neing edge

Figure 1.27
If INST Bus and Data Bus access the same memory space (IM/DM) concurrently, the Data Bus
will have higher priority than INST Bus. Thus only the Data Bus memory access will be accepted
and the memory content of DATA_ADDR is returned to the bus at next cycle.
The BUS_FIGHT signal will be pulled high to prevent the INST Bus from getting wrong data at
next cycle. If BUS_FIGHT signal is placed at high then the DATA Bus will release memory bus
and let INST Bus to get control of memory bus to prevent starvation condition.
CPU will fetch the data value on INST_DI and DATA_DI into internal registers at next clock
rising edge while INST_RDY and DATA_RDY are high, BUS_FIGHT is low. So the data input

must keep on bus until them being fetched into CPU.

® MULS Timing (FIR_MOV OFF, Rd, Rs index to separate memory space)

© Generalplus Technology Inc. PAGE 39 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

CLK / / : : : / / : : /
INST_ADDR X PC X Rs X Rs+l x Rs+2 X Rs+3 X X Rs+n XM+n+l X PC+1 X
INST_DI X)(MUISXX XX D XX[D+1X)(ID+2X)< m(XXIDm XX
DATA_ADDR X Rd X Rd+1 X Rd+2 X Rd+3 X: X Rd+n X Rd+n+l
DATA_DI XX DD Xx DD+1 m DD+2 m m m DD+n
: : ‘ : ’ :

Send Rs to INST_ADDR, Rd to Fetch ID, DD from separate bus to Fetch next instruction

DATA_ADDR concurrently for MAC unit input concurrently

accelerating MULS operation

Figure 1.28

MULS operation will fetch data from INST Bus and DATA Bus concurrently to accelerating MAC

operation.

If the parameters array location indexed by Rd, Rs are placed at different memory ranges (IM/DM),

MULS

will have the best performance. Otherwise, bus conflict stall may be occurred and need 2 times of

executing cycles.

Cycles Count:

(No Bus Conflict, FIR_MOV
OFF): N+2 (No Bus Conflict,
FIR_MOV ON): 2N+1 (Bus
Conflict, FIR_MOV OFF):
2N+2 (Bus Conflict,
FIR_MOV ON): 3N

® MULS Timing (FIR_MOV ON, Rd, Rs index to separate memory space)

© Generalplus Technology Inc. PAGE 40

V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

CLK [A N A W A U AN N S R A N A A A T SR T A
INSTADDR | PC | Rs | Rel]| Rei2 i Rsé3 i i
WA iAf A g o ; " : i : i
INST_DI l‘\} MULS l‘\} Ql ID (3! I3+ 0 [+ (}1 I0+3 {}l
A W [B . Al : TR B |'; |
R E : : E— A — —
INST_RD_E : : - / § { 5. [4 {
'll [I— Ell—ll: | S
DATA_ADDR | X X Riy 1 i a2 { Rif+3 { R
: g : 3 : ! !
: : A VA7 : VAT : A7 ; i
DATA_DI : : {} DD j}, DI+ 0' D2)gt DiM3 {}u
: : : VA VAT ; WA : i :
DATA_DO g : i j\'}, DD (}- D+ ,tgn DD+2)Gu D043
: : ! A ' [} : I . I I ! I I !
; ! —T : : — =
DATA RD B | i ; | . |) |
DATA_WE_B . / | / i | \
W I |_-' '|—| EI'

DAT

BRI

Figure 1.29

® MULS Timing (FIR_MOV OFF, Rd, Rs index to same memory space)

© Generalplus Technology Inc.

PAGE 41 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

CLK

INST_ADDR

INST_DI

INST_RD_B

DATA_ADDR

Rd+1 X Rd:2 X Rd#+3 X Rd:+4

DATA_DI

BUS_FIGHT

DATARDB \

Send Rs to INST_ADDR, Rd to
DATA_ADDR concurrently for
accelerating MULS operation, but
Rd, Rs index to same memory space,
DATA Bus will have high priority
and stall the INST Bus Access

DD m(DI}+1 X}(DI+2 XX DI}+3

BUS_FIGHT is high, the INST
Bus will have high priority and
stall DATA Bus access

Figure 1.30

© Generalplus Technology Inc.

PAGE 42 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

MULS Timing (FIR_MOV ON, Rd, Rs index to same memory space)

TR AT AR AR AT AT REE
I LI LI LI I I | I | B | T | B]
|.|' '|: ' IE.‘ " 'IEI : : Igll :
[NST_ADDE E P f Bs I Rsd] i Bea? Iq‘ i
—_, i : i ; L] H i M i
l- i -.] : |] ‘_ |) H H |;)
[MNST_D1 ;ﬂ::l".f._"::.]:‘ 23‘ | 1] :3: D] : i} [I¥]
i il Iy H 5] H H | H
[MST_RD_ B : : i \ : [
! :'.—|_' N
i B : : : v : : 1
VAT A AW : L ' st T B 3
DATA_ADDR .I. Rd J;I 5 d i DR | |' Rd
k i i H i 1 1 i
|: i '|:) , |:) ,
DATA_| {:{ KK ﬂ::(1 : I} DD !
Rl ! (g B
|] |I I
DR T AT : : F::‘ i (K1 i:: [T
: : ; Al - - L ; :
B S— — — —
DATA_RD B { / i i ; i i ; i
{ S W - : F| I : F|
DATA_WE_B § § ?‘. .4 : -; ;{
Ii—.i ‘i— b i —_— i
BUS_FIGH | | } i i i i
] " ! Je PN (S S (R
Send Be o INST_ADDE, Rd i
DATA_ADDE comommently fior
pecelernting MULS operation, but
Fd, Be index oo same memory space, I L .
DATA Bas will ke high pricrity FIR_MOV O, write [Rd] to [Re
and stall the INST Bus Access
BUS_FIGHT ie high, the INS
Bus will have high pricrity and
siall DATA Bus acpess

1.7 Addressing Modes

Figure 1.31

1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1

In unSP 1.0 and unSP 1.1, performing the same operation on differently addressed operand

may require different addressing modes. This indicates that the final destination address of

operand can be derived from register, content in register or offset of address. The destination

address formed by some calculations is called Effective Address (EA).

© Generalplus Technology Inc.

PAGE 43

V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

The effective address will be divided into three types according to its number of bit. That is 6-bit, 16-bit
and 22-bit EA. The first two are offset of address. Only operand in current page can be addressed.
Moreover, the 22-bit EA means all operands in the whole range of memory can be addressed. The unsP
1.0 and unSP 1.1 supports six addressing modes, in which 16-bit data operand or the address operand of
transfer instruction can be accessed. In instruction set, most instructions can combine with these six
addressing mode to generate an instruction subset.

B Indexed Address

® Addressing space is limited to the memory in PAGEOQ (0x000000-0x00FFFF) only
B PC Relatively

) Program jumps to an address related to PC conditionally or unconditionally. The jumping
range is limited to PC+63-word. The condition lies on NZSC flags in SR register.

® In unSP1.1, the jumping range is limited to CS:PC+63-word.
® Memory Absolute Address
Addressing space is limited to:
(1) First 64 words (0x00 ~ 0x3F) in PAGEO
(2) PAGEO (0x000000~0x00FFFF)
(3) Calling a sub-program in code segment of 64-page absolute address
B |mmediate
® The operand is IM6 (6-bit immediate value)
) The operand is IM16 (16-bit immediate value)
B Register Direct
The operand is in register directly

B Register Indirect

® Addressing space in memory is limited to data segment in PAGEO or 64-page addresses. Its

offset depends on content in register and its page index on DS field of SR register.
® Addressing space is limited in PAGEO. The offset depends on the content of register.

o Using register indirect addressing mode in unsP1.1, the increment or decrement is the
arithmetical operation of 22-bit value, formed by DS register and target register. For instance,
suppose R1=0xFFFF. After executing D:[R1++], DS will be incremented by one and R1
becomes 0x0000.

1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0

B Register
Users can shift the source register (Rs) value first and then executing ALU operation with

destination register (Rd), place the result at destination register.

B Immediate

Users can do ALU operation between source register and a 6-bit or a 16-bit immediate value,
then

© Generalplus Technology Inc. PAGE 44 V1.0 November 26, 2007

o

Generalplus

unSP Programmer’s Guide

B Direct
)
)
| Indirect
®
®
®
®
[| Multi-indirect
[]

place the result at destination register.

Users can do ALU operation between source register and the value at memory location
indexed by 6-bit or 16-bit operand, then place the result at destination register.

Users can store register value to a memory location indexed by 6-bit or 16-bit operand.

Users can do ALU operation between destination register and the value at memory location
indexed by source register, then place the result at destination register.

Users can store destination register value to a memory location indexed by source register.
The source register can be increased by 1 before ALU operation or increased/decreased by

1 after ALU operation.

Users can use the “D:” indicator to access memory location larger than 64k words, if the “D:”
indicator is used, the high 6-bit of accessing address will use data segment (DS) value or be

zeroed.

Users can push or pop multiple registers’ value to memory location indexed by stack pointer (SP)

Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

1.7.3 9 addressing modes of unSP-1.3

Register

Immediate

Direct

Indirect

Users can shift the source register (Rs) value first and then executing ALU operation with

destination register (Rd), place the result at destination register.

Users can do ALU operation between s ource register and a 6-bit or a 16-bit immediate value, then

place the result at destination register.

Users can do ALU operation between source register and the value at memory location
indexed by 6-bit or 16-bit operand, then place the result at destination register.

Users can store register value to a memory location indexed by 6-bit or 16-bit operand.

Users can do ALU operation between destination register and the value at memory location
indexed by source register, then place the result at destination register.

Users can store destination register value to a memory location indexed by source register.
The source register can be increased by 1 before ALU operation or increased/decreased by 1

after ALU operation.

Users can use the “D:” indicator to access memory location larger than 64k words, if the “D:”

indicator is used, the high 6-bit of accessing address will use data segment (DS) value or be

© Generalplus Technology Inc. PAGE 45 V1.0 November 26, 2007

G

Generalplus UnSP Programmel”s GU|de

zeroed.

Multi-indirect

Users can push or pop multiple registers’ value to memory location indexed by stack pointer (SP)
Displacement

Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.
Byte Register Indirect

® Users can do ALU operation between destination register and the value at memory location.
The first character B or W indicates accessing one byte or word. The effective byte address
(abbreviates to EBA) is {Rx+1:Rx;22-0. The effective (word) address is EBAz2-1. If Rxo is 0, low
byte in EBA22~1 is the target. If Rxo is 1, high byte in EBA22-1 is the target.

® \When accessing one word and the least significant bit of EBA is 1, that is, accessing across
word boundary, a software interrupt occurs and the AdE bit in FR register will be set. User
should take care to prevent such unaligned access takes place. If the software interrupt occurs

in the developing phase, user should debug their codes to remove unaligned access.

EA Memory Cell EBA
0x12340 0x24681 0x24680
0x12341 0x24683 0x24682
0x12342 0x24685 0x24684
0x12343 0x24687 0x24686

® This addressing mode supports post increment, post increment and pre increment operations
on {Rx+1:Rxj22-0. For post increment, post increment and pre increment operations, the bits in

{Rx+1:Rxy31-23 (that is, Rx+1 15-7) are not affected.

Displacement
Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

Displacement
Users can do ALU operation between destination register and the value at memory location

indexed by base pointer (BP) with a 6-bit displacement.

1.8 Interrupts

1.8.1 Interrupts of unSP-1.0 and unSP-1.1

unSP 1.0 and unSP 1.1 accept two types of external interrupts: Fast Interrupt (FIQ) and Interrupt

© Generalplus Technology Inc. PAGE 46 V1.0 November 26, 2007

Generalplus unSP Programmer’s Guide

(IRQ). Both interrupts can be freely turned on or off. In addition, unsP 1.0 and unSP 1.1 also

implements a software interrupt, BREAK. The interrupt vector mappings and priorities are depicted as

follow:
Interrupt Vector Interrupt Priority

OxFFF5 BREAK 1. Reset (highest) * If more than two IRQs occurred simulianeously,

OxFFFG FIQ 2. FIQ the priority is from IRQ0 down to UART IRQ.

OxFFF7 RESET 3. IRQO ~ &, UART IRQ"| That is, IRQO is the highest and UART IRQ is

0XFFF3 IRQ0 4. BREAK™ (lowest) the lowest. However, if a lower priority IRQ

0XFFF9 IR occurred first, even a higher priority IRG can not

OXFFFA IRQ2 interrupt the current IRQ. For example, if IRQ4

0XFFFB IRQ3 is occurred first, IRQ3 is unable to interrupt

OXFFFC IRC4 IRQ4. The priority applies only when two IRCs

0XFFFD IRQ5 occurred concurrently.

OXFFFE IRQE

DXFFFF UART IRQ “*The acticn of “BREAK” is the same as “CALL"
except “BREAK™ will jump to the fixed address
specified at 0xFFF5.

Figure 1.32
1.8.2 Interrupts of unSP-1.2

Interrupts are used to handle exception while program is running. unSP 1.2 support 10 interrupt sources
and 1 reset request. When an exception arises, unSP 1.2 completes the current instruction and then
departs from the current instruction sequence to handle the exception. The following sequence of
actions will be taken by processor before entering service routine.

B According the interrupt priorities to choose the highest priority event. The interrupt priority is

showed as below:
® RESET > BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

® If IRQ_NEST mode is off and program running in IRQ service routine, only REST, BREAK
and FIQ event can interrupt CPU.
® If IRQ_NEST mode is on and program running in IRQ service routine, besides RESET,

BREAK, FIQ event, the IRQ events with priority greater than PRI register also can interrupt

CPU.
B Fetch the relevant vector address list below into CPU.
Table 1.6
Interrupts | TES-||—[1:O] |
00 | 01 | 10 | 11

© Generalplus Technology Inc. PAGE 47 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

The leaving sequence of service routine.

Interrupts TEST[1:0]
00 01 10 11

BREAK 0x00FFF5 0x00FFE5 0x007FF5 0x007FE5
FlQ 0x00FFF6 0xO0FFE6 0x007FF6 0x007FE6
RESET Ox00FFF7 0x00FFE7 0x007FF7 0x007FE7
IRQO 0xO0FFF8 O0xO0FFE8 0x007FF8 0x007FE8
IRQ1 0x00FFF9 0x00FFE9 0x007FF9 0x007FE9
IRQ2 O0x00FFFA O0x00FFEA 0x007FFA 0x007FEA
IRQ3 O0xO0FFFB 0xO0OFFEB 0x007FFB 0x007FEB
IRQ4 0x00FFFC 0x00FFEC 0x007FFC 0x007FEC
IRQ5 0x00FFFD 0x00FFED 0x007FFD 0x007FED
IRQ6 0x00FFFE O0xO0FFEE 0x007FFE 0x007FEE
IRQ7 O0x00FFFF O0xO0FFEF 0x007FFF 0x007FEF

If the interrupt event is IRQ and IRQ_NEST mode is on, unSP will save PC, SR and FR into memory

stack indexed by SP. If IRQ_NEST mode is off, only PC and SR will be saved.

unSP 1.2 will change PC as the address fetched by vector address and fetching the first instruction.

If the interrupt event is IRQ and IRQ_NEST mode is on, the PRI register will be changed as the

IRQS value.

If CPU is servicing IRQ interrupt and IRQ_NEST mode is on, the FR, SR and PC will be restored

from memory stack indexed by SP. If IRQ_NEST mode is off, only SR and PC will be restored. Since

the values in these registers are changed by the restore operation, CPU will return to the program

status before interrupt and keep executing.

The interrupt timing diagrams are illustrated as below:

B Resettiming

clk J_ | | | |

aldr|21:0] || £3 I EEET] 0] Htt | feti [
gaaltn] [H— & | T — gy | o —— @ p—I 0f | —
o [=L T L_| B
w7 | 1] | —
vel

WLED

It | j

fully res |__|

© Generalplus Technology Inc. PAGE 48 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

T et reset vector first instruction
Figure 1.33
® After CPU acknowledge reset signal, the first instruction will be fetched at 10th clock cycle.
Program reset vector must place at address OxFFF7.
® Res: CPU reset signal, active low, Treset Pulse width must keep at least 2 clock cycles for

CPU to acknowledge reset pulse.

® fully_res: CPU internal reset signal.

B Entering interrupt service routine

adde(21:0) J OL6E] LT | 8IS] s ! ffel [7] T] 8B |
e B3 T um — 9 —{ W — @}
preb L1 L1 | | | L P F 1
rdh | L L [
vk I
ren | |
fig
irq |
irgs|2:0] [I i
< »
Tinterrupt interrupt vector save PC save SR first instruction
Figure 1.34

B Leaving interrupt service routine

el {3 [S s [e e
adde [21:0] ES I e ! i 1 T | 8115 !
data[15:0] 934 } 100 B115 } { 93ch
g | [T | ;L
w1] L1 LT
wel
WiEn
tig
irg
cgs[2:0] 1

leave interrupt (reti) restore SR restore PC origin address

Figure 1.35

© Generalplus Technology Inc. PAGE 49 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

® 8 clock cycles needed from CPU accept interrupt signal to get the first instruction of

interrupt service routine.

® The longest delay from interrupt signal rising to acknowledge by CPU Tinterrupt <= 182

clock cycles (max instruction executing cycle)

B Entering interrupt service routine

clk |
adde(21:0] J81*¥] 876 8177|8178 fffe TS) e) T) 8laa)
data[15:0] - 441 450a}— { Bl) {8177} { 0} {3} T4 }—
e LT L[| -+ |_F A I S N
web L L I
WIEn |
fig '
irg] |
irgs(2:0] z I g B i
IRQBRT[3:0] 3 G
a . interrupt vector save SR - first instruction
: Til‘l'.E'rL .
ot | save PC save FR :
irgs[2:0] < |REJPR|[3:0] IRQPRI[3:0]=irgs[2:0]
accept interrupt
Figure 1.36

B Leaving interrupt service routine

clk
addr[21:0]
data[15:0]
preb

rdh

veh

VIEn

fig

irg
irgs[2:0]
IRPRI[3:0]

| S (s [O S
SRR A L S BN
o —
T L [T T el
L e e e e
b
e ! B
A
restore FR ‘ restore SR origin address
leave interrupt (reti) * restore PC

restore IRQPRI[3:0]

Figure 1.37

© Generalplus Technology Inc.

PAGE 50

V1.0 November 26, 2007

Generalplus unSP Programmer’s Guide

® Irgs[2:0]: External interrupt source select pins.
® RQPRI[3:0]: Interrupt priority register, user can change its value to allow specify range of
interrupts can be accepted by CPU. After entering interrupt service routine, the IRQPRI

register will be change to current IRQ number.

1.8.3 Interrupts of unSP-1.3

Interrupts are used to handle exception while program is running. unsP 1.3 support 10 interrupt
sources and 1 reset request. When an exception arises, CPU will complete the current instruction
and then departs from the current instruction sequence to handle the exception. The following

sequence of actions will be

taken by processor before entering service routine.
B According the interrupt priorities to choose the highest priority event. The interrupt priority is showed

as below
1. RESET > BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

2. IRQ_NEST mode is always on. When program is running in IRQ service routine, besides

RESET, BREAK, FIQ event, the IRQ events which priority greater than PRI register also can

interrupt CPU.
B Fetch the relevant vector address list below into CPU.
Table 1.7
Interrupts Vector Address

BREAK { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h5}
FIQ { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h6}
RESET { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h0, 3'h7}
IRQO { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h0}
IRQ1 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h1}
IRQ2 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h2}
IRQ3 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h3}
IRQ4 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h4}
IRQ5 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h5}
IRQ6 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h6}
IRQ7 { ~TEST[1], INT_BASE[9:0], ~TEST[0], 1'h1, 3'h7}

B [f the interrupt event is IRQ or FIQ, unSP1.3 will save PC, SR and FR into memory stack indexed by
{SS, SP}. For RESET and BREAK, only PC and SR will be saved.

unSP 1.3 will change PC as the address fetched by vector address and fetching the first instruction.

If the interrupt event is IRQ, the PRI register will be changed as the IRQ’s value.

® |RQ_ENABLE is turned off automatically when unSP 1.3 performing IRQ service routine. User can

© Generalplus Technology Inc. PAGE 51 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

turn on IRQ_ENABLE in IRQ service routine to allow higher priority IRQ to interrupt it.
B unSP 1.3 can re-execute FIQ service routine when serving FIQ if FIQ_ENABLE is on. Both
FIQ_ENABLE and IRQ_ENABLE are turned off automatically when unSP1.3 performing FIQ service

routine.

B unSP1.3 will check the interrupt signals (FIQ/IRQ) at the last cycle of every instruction except:
® RA16 (Direct16 instruction with read) for semaphore implementation of the operating system
® RETI instruction
® MDS access instruction
The leaving sequence of service routine.
| If CPU is servicing IRQ or FIQ, the FR, SR, PC will be restored from memory stack indexed by SP
else only SR, PC will be restored. CPU will return to the program status before interrupt and keep

executing.

The interrupt timing diagrams are illustrated as below.

B Reset timing

R VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

ADDR { omm | oo) oo | omm | A) A

[
/

m)\ [
RDB _/

M\ T
/S L

WEB
WREN
MRDY
REs
"+ Tam >
Teset vector

Figure 1.38
o After CPU acknowledge reset signal, the first instruction will be fetched at 12th clock cycle.

® program reset vector must place at address Oxfff7

® RES : CPU reset signal, active high, Treset pulse width must keep at least 2 clock cycles

B Entering interrupt service routine

© Generalplus Technology Inc. PAGE 52 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

S RVAVAVAVAVAVAVAVAVAVAVAVAVAVE
ATIDR ::I: |' Inferrupt Vector H [53.5P] :l: [55,5P)- IK [33.5F)-2 :I(g Hj[:

STACK_ACCESS

/
S GG
\

1 ' L {f an }(\ 1

PRER _Jl'll \ ‘I|I |'| o
—) I,I' -
FLH |
Il'l.__.' ll".__ |/
' \ i
WER \ |"| \ ."I[|
' \
WREN fl’ |'|
WRDY
IR
= T
RS }' N
PRI M \i N
1 L
[ROS(Mk: PREDM), interript akdiess sive FC give SR sive FR. first sdevice routine instruction
cpu will acorpt mbermap
the valie of TROS will
wapnad o PRI
Figure 1.39
® 10 clock cycles needed from CPU accept interrupt signal to get the first instruction of

interrupt service routine.
® The longest delay from interrupt signal rising to acknowledge by CPU Tinterrupt <=

182 clock cycles (max instruction executing cycle)

® |IRQS[2:0]: External interrupt source select pins.
® PRI[3:0]: Interrupt priority register, user can change its value to allow specify range of
interrupts can be accepted by CPU. After entering interrupt service routine, the

IRQPRI register will be change to current IRQ number.

B Leaving interrupt service routine

© Generalplus Technology Inc. PAGE 53 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

SRVAVAVAY ﬂf AVAVAVAVAVAVE
o \J \n_a Lf /_\‘ (WA Jﬂ
f
ADDE jl X X 2 K [55.5P])-1 X | 55,5P] XL Py X LY }C
STACK_ACCESS { ﬁﬁk
I A A)
DATA » A D ,,l—*.?: Dy A
\ / |
PREB \ 1 \
i f \ f
RDB / '., i . f
WEB
WEENM
NMELYY
[RO) '\l
[ROS N
PRI N }i M
leave mdsmupt instmicticn resiore FE 1 b1 restore PO origin address
restore PRI to ongim value

Figure 1.40
1.8.4 Interrupts of unSP-2.0

unsP 2.0 supports 10 interrupt sources and 1 reset request. When an exception arises, unsP 2.0
completes the current instruction and then departs from the current instruction sequence to handle

the exception. The following sequence of actions will be taken by processor before entering service

routine.

u According the interrupt priorities to choose the highest priority event. The interrupt priority is shown as
below:

® RESET>BREAK > FIQ > IRQ0 > IRQ1 > IRQ2 > IRQ3 > IRQ4 > IRQ5 > IRQ6 > IRQ7

® If IRQ_NEST mode is off and program running in IRQ service routine, only RESET BREAK,
FIQ event can interrupt CPU.

® If IRQ_NEST mode is on and program running in IRQ service routine, besides RESET,
BREAK, FIQ event, the IRQ events which priority greater than PRI register also can
interrupt CPU.

© Generalplus Technology Inc. PAGE 54 V1.0 November 26, 2007

G

Generalplus unSP_Programmer’s Guide
] Fetch the relevant vector address list below into CPU.
Table 1.8
TEST[1:0]
Interru pts 00 01 10 1

BREAK 0x00FFF5 0x00FFES5 0x007FF5 0x007FE5

FIQ 0x00FFF6 0x00FFE6 0x007FF6 0x007FE®6

RESET O0x00FFF7 0x00FFE7 0x007FF7 0x007FE7

IRQO 0x00FFF8 0x00FFE8 0x007FF8 0x007FES8

IRQ1 0x00FFF9 0x00FFE9 0x007FF9 0x007FE9

IRQ2 O0x00FFFA 0x00FFEA 0x007FFA 0x007FEA

IRQ3 0x00FFFB 0x00FFEB 0x007FFB 0x007FEB

IRQ4 0x00FFFC 0x00FFEC 0x007FFC 0x007FEC

IRQ5 0x00FFFD 0x00FFED 0x007FFD 0x007FED

IRQ6 0x00FFFE 0x00FFEE 0x007FFE 0x007FEE

IRQ7 0x00FFFF 0x00FFEF 0x007FFF 0x007FEF

B If the interrupt event is IRQ and IRQ_NEST mode is on, unsP2.0 will save PC, SR, FR into memory
stack indexed by SP else only PC, SR will be saved.

® unSP 2.0 will change PC as the address fetched by vector address and fetching the first instruction.

m [f the interrupt event is IRQ and IRQ_NEST mode is on, the PRI register will be changed to current

IRQ number.

The leaving sequence of service routine.
® |f CPU is servicing IRQ interrupt and IRQ_NEST mode is on, the FR, SR, PC will be restored from
memory stack indexed by SP else only SR, PC will be restored, and CPU will return to the program

status before interrupt and keep executing.

The interrupt timing diagrams are illustrated as below:

B RESET Timing

© Generalplus Technology Inc. PAGE 55 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

INST_ADDR

FFE7 >< start addr ﬁt it addr+

INST_DI

X
0
\

r | K
><>< >O—<>< st adr >O<| ot instn “”XX

RESET B

X
'
¥

RESET_B Enter

Figure 1.41

Treset_s: External reset signal, active low, Treset_s pulse width must keep at least 2 clock cycles for
CPU

to acknowledge reset pulse.

Tenter: Reset timing, 4 cycles needed from CPU accept reset signal to fetch the first instruction.

B Break Timing

CLK

INST_ADDR X A X A+l X Brea.kVacwr Xlntaddr XInt addr+1XInt addr+2X1nt addr+3XInt addr+4X

INST_DI m m F160 m w Intaddr MErStmst inst+1 m inst+2 W inst+3 m
: : -— :

INST_RD_B _\ : : : ' : :
DATA_ADDR X X SP X SP-1 X
DATA_DO ﬂ Xx A+l XX SR Xx
DATA_WE_B \ /
« T;m >

break Save PC Save SR

Figure 1.42

© Generalplus Technology Inc. PAGE 56 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

Tenter : Interrupt entering time, 4 cycles needed from CPU accept interrupt request to fetch

the first instruction.

® Entering interrupt service routine

INST_ADDR X A X A+l X Interru;ét Vector X[nt addr X[nt addr+1X1nt addr+2XInt addr+3X1nt addrHX

INST_DI »(XX m m Intéaddr XX first instXX inst+1 XX inst+2 XX inst-+3 X)(

FIQ/IRQ L)
DATA_ADDR X X SP X SP-1 X
DATA DO X)()Q(A XX SR)(X
E : : : Y SRR N
DATA_WE_B : : : : \ : /
gTresW“w T";ﬂw : :
' ! SavePC: SaveSR!

Figure 1.43
Trespose: Interrupt Response Time, Trespose <= 50 clock cycles (max instruction executing cycles,
MULS) Tenter : Interrupt entering time, 4 cycles needed from CPU accept interrupt request to

fetch the first instruction.

B Leaving interrupt service routine

© Generalplus Technology Inc. PAGE 57 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

\ — — — —

\ — — i —

S \ i \ ! \ H \ ! \ y \ i i \
CLK N S U I U U A U S N 1
[— — LI f | | — :

S ~ \Tntaddr : L : Voo
INST_ADDR ’: Int addr .‘4\& N o \ : [nt agddr N+2 i PC
i f_ Tl I ! ! ' "L
INST_DI 13': ,'{}‘, 9498 (} i
N ;
1.: H 'Y

INST_RD_B 1 ; [; : : §

FIQ / IRQ / :
f |

DATA ADDR | [sear § sea2

vy ; ; ; W VA i/
DATA_DI i ; | | 0 s e W
IV . . . A SN A

e e e s
DATA_RD_B ; ; : : /

RETI : : ‘Restore SR Restore PC

Figure 1.44

] Entering interrupt service routine

© Generalplus Technology Inc. PAGE 58 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

CLK

INST_ADDR X A X Atl X Interrup?t Vector X Int addr X[nt addr+1X[nt addr+2XInt addr+3X1nt addrMX

INST_DI XX XX xx)0(Tntiaddr XXﬁrst instm inst+1)O(inst+2 XX inst+3 »(
INST RD_B \ : § : : : : :

RQ I
wes D (R
R [by
DATA_ADDR X § § : X SP X SP-1 x SP-2 X
DATA_DO m(XX A xx SR XX FR >0<
: ; ; ; B
prases |0 1 1 |||
ETreSm"*’ T'%"m : : :
: SavePC! SaveSR: Save FR:
Figure 1.45

Trespose: INterrupt response time, Trespose <= 50 clock cycles (max instruction executing cycles,
MULS). Tenter : Interrupt entering time, 5 cycles needed from CPU accept interrupt request

to fetch the first instruction.
IRQS[2:0]: External triggered IRQ number.

IRQPRI[3:0]: Internal interrupt priority register, user can change its value in FR to disable
interrupts with lower interrupt priority. After entering interrupt service routine, the IRQPRI

register will be changed to current IRQ number.

B Leaving interrupt service routine

© Generalplus Technology Inc. PAGE 59 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

J; [nt addr N J; Int ackdr J; [t adldr N+2 ¢ Y opc I PC+1 :I: PC+2

INST_ADDR 1 Nl

!,

INST_DI K}i {) 9A98 I{}f : i i i i (}‘ D 'IO: D+1
VA SV TR : : : : - I3 I¥

'y

: : : :

INST_RD B ' : { : : : 4

S : : : A

S f : :
RO | ; :
i : :

—

ROPRI N : i il

DATA_ADDR | : : [sert 1 s Y s |

W/ W/
DATA_DI f;} : : : (} FR {) SR (\} PC {}
VL N N N A A AR N

DATA_RD_B ; ; ;

Restore FR Restore SR Restore PC

RETI

Figure 1.46

1.9 Data Types

The data structure of unSP is a 16-bit data type, called a word. A 6-bit constant data type in
machine code is for quick access to the first 64 words (0x000000 ~ 0x00003F) in PAGEQ. The
6-bit constant also serves as an offset to branch instructions or pointer type (via Base Pointer,
BP) data access. The 22-bit constant data type in machine code is for referencing an address in

memory. There is no 8-bit data type in unSP.

1.10 ALU Operation Types

The ALU operation types and its effect on the flags in SR (Status Register) are listed in Table 1.9.

Table 1.9 ALU opcode definition
Operation Type Operation N z S (03

Add a+b ~ ~ ~ ~

Add with carry a+b+C ~ - ~ -

Subtract a+~b+1 - - - -

Subtract with carry a+~b+C - - ~ -

Compare at+t~b+1 ~ ~ ~ ~

© Generalplus Technology Inc. PAGE 60 V1.0 November 26

, 2007

G

Generalplus

unSP Programmer’s Guide

Operation Type Operation 4 S C
Negative ~b+1 ~
Exclusive OR a XORb ~
OR aORb ~
AND aAND b ~
Test TEST a, b ~
Load from memory or register to
Register a=b)
Store from register to memory a=b - - -

N, Z, S, C: Negative, Zero, Sign, and Carry.

The flags are defined as follows.

Flag N is 1: if the MSB (most significant bit) of result is 1.

Flag N is 0: if the MSB (most significant bit) of result is 0.

Flag Z is 1: if the result is 0.

Flag Z is O: if the result is not 0.

Flag Siis 1:
Flag Sis O:

Flag C is 1: if carry occurs.

Flag C is O: if no carry occurs.

if the result is negative (for two's complement).

if the result is not negative.

For unsigned operations, the largest number for 16-bit representation is OxFFFF (65535). If the results are

greater than OxFFFF (65535), flag C is set. For two's complement operations, the largest number is

O0x7FFF (32767) and the smallest is 0x8000 (-32768). If the computation result is less than zero, flag S

is set. However, the result could be larger than Ox7FFF or smaller than 0x8000. For example, OX7FFF

(32767) + OX7FFF (32767) = OXFFFE (65534). The result is positive (S=0) and no carry is set (C=0). In

this case, the N flag is set (N=1 since the MSB of the result is 1). Overflow occurs if flag N and S are

different, either S=0, N=1 or vice versa. In operation, the flags will not be changed if the destination

register is PC.

1.11 Conditional Branches

Conditional branches consult flags. Four bits (Opcode, bits 15:12) in the branch type instructions

are defined in Table 1.10.

Table 1.10 OP codes in conditional branch operations

Syntax Description Branch
JCC Carry clear C==0
JB Below (unsigned) C==0
JNAE |Not above and equal (unsigned) C==0

© Generalplus Technology Inc.

PAGE 61

V1.0 November 26, 2007

unSP Programmer’s Guide

Syntax Description Branch
JCS Carry set C==
JNB Not below (unsigned) C==
JAE Above and equal (unsigned) C==
JSC Sign clear S==0
JGE Great and equal (signed) S==0
JNL Not less (signed) S==0
JSS Sign set S==
JNGE |Not great than (signed) S==
JL Less (signed) S==
JNE Not equal Z==0
JNZ Not zero Z==0
Jz Zero Z==
JE Equal Z==
JPL Plus N==0
JMI Minus N==
JBE Below and equal (unsigned) Not (Z==0 and C==1)
JNA Not above (unsigned) Not (Z==0 and C==1)
JNBE |Not below and equal (unsigned) Z==0 and C==
JA Above (unsigned) Z==0 and C==
JLE Less and equal (signed) Not (Z==0 and S==0)
IJNG Not great (signed) Not (Z==0 and S==0)
JNLE Not less and equal (signed) Z==0 and S==0
JG Great (signed) Z==0 and S==0
JVvC Not overflow (signed) N ==
JVS Overflow (signed) N!=8S
JMP Unconditional branch Always

© Generalplus Technology Inc. PAGE 62 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

2 unSP- 1.1 Instruction Set

2.1 unSP Instructions Classification

2.1.1 Notation

The following notations will be effective in the following chapters of instruction set description.

Rd

Rs Source register or pointer of source memory

X, Y Source operation units. X, Y will be shown as different object according to
addressing mode.

Rx ~ Ry User registers; x and y are the serial number

MR A 32-bit multiplicative result register composed of R3 and R4 (R4 is high word
group, R3 is low word group)

Sign of ALU operation

NZSC Flags for ALU operation

+, -, Addition, subtraction, multiplication

& |, N~ Logical AND, logical OR, logical XOR, logical NOT
Data transfer

SFT Shift type

Nn The number of shift bits

IM6, IM16 6-bit immediate value, 16-bit immediate value

A6, A16 bit 0-5 of an address expression, bit 0—15 of an address expression

PC, SP, BP Program counter register, stack pointer register, base pointer register

SR Status register

CS, DS Code segment and data segment in SR

Offset Bit 0—15 offset of a 22-bit address expression

Segment Bit 16—21 of a 22-bit address expression, which is the page number

{} Optional

[1 Sign of register indirect addressing

D Sign of non-zero pages addressing

++, -- Sign of increasing or decreasing a word for pointer

Ss Signed to signed number

Us Unsigned to singed number

If cond =1 If the result of condition for NZSC is true

Label, sub_prog
CPUCLK
N

Destination register or pointer of destination memory

Label of program and sub-program
CPU clock

The number of items for inner product signed by MULS

© Generalplus Technology Inc.

PAGE 63

V1.0 November 26, 2007

Generalplus unSP Programmer’s Guide

FIR Finite Impulse Response filter

1 Commentary line

2.1.2 Instruction Classification

There are 41 instructions in unSP all of which can be divided into four types. See Table 2.1.

Table 2.1 unSP Instruction Classifications

Type Instruction influx Operations

LOAD, STORE XRd, RdX

Data Transfer

PUSH, POP Rx~Ry[Rs], [Rs]Rx~Ry
ADD, SUB (XY) Rd
ADC, SBC (XYC) Rd
NEG, CMP ~X+1Rd, X-Y, NZSC will be affected
ALU MUL RdRsMR
Operation MULS MR + [Rd][Rs]MR

AND, OR, XOR X&YRd, X|YRd, X*YRd

TEST X&Y, only NZSC will be affected
SFT Rd # (Rs SFT nn) Rd
PC[SP], SR[SP+1],
BREAK
[OXFFF5]PC, 0 CS
PC[SP], SR[SP+1],
CALL label
(A22)15~0 ™ (A22)21~16CS
Transfer
RETF, RETI [SP]SR, [SP-1]PC
Control
Jcond, If cond=1, PC+IM6;
JMP label PCxIM6
unsP1.0: A16PC
GOTO label

unSP1.1: (A22)15-0 PC, (A22)21-16CS
FIR_MOV ON/OFF |Enable/disable automatic data movement for FIR filter

FIQ ON/OFF Enable/disable FIQ
Miscellaneous IRQ ON/OFF Enable/disable IRQ
INT Set flags to enable/disable FIQ and IRQ
NOP Implemented as an unconditional jump to next address

2.2 unSP Instruction Format

The assembly instructions of unSP will be translated into five types of machine codes by the assembiler.

Some terms should be defined before we describe these instructions. See Table 2.2.

Table 2.2 Fields in Instruction Format

© Generalplus Technology Inc. PAGE 64 V1.0 November 26, 2007

[|

C“lt'.‘l]‘:::'lllt)[lli'} UnSP Programmel”s GU|de
Field in instruction Area symbol Remark
Used for appointing the function, addressing mode and operation
Operation type OoP
type of instructions.
Operand can be divided into register, immediate and offset of
Operand OPD
address by different operation type or addressing mode.
Operand expansion Operand can be expanded into 16-bit immediate and 16-bit offset
OPDE
of address by different addressing modes.
Conditional code COND Various conditional codes in jump instructions.
It is used to label the symbols of operation attribute(D, @, S, W,
Flags FL
SFT, F, I).
It is used to label fields of operation range (SIZE—Serials,
Range RG
nn—Shift)

Five instruction formats mentioned above will be listed in Table 2.3. Each field in every instruction will
show different form according to different operation and addressing mode.

Table 2.3 unSP Instruction Format

No. Instruction Format Example
Word Group 1 Word Group 2
15 0 RETF, RETI, NOP, BREAK
OP FIR_MOW ON/OFF
1 15 0 FIQ ON/OFF,
OP FL IRQ ON/OFF, INT
15 0 Rd #= IM6, Rd #= [AB]
oP OPD1 oPD2 Rd #= [BP+IM8]
15 0
OP | OPD1 | FL | OPD2 MR = Rd * Rs {, ss}
2 15 0 MR =Rd *Rs, us
OP | OPD1 | RG | OPD2 PUSH Rx, Ry to [Rs]
15 0 POF Rx, Ry from [Rs]
OP | OPD1 | FLRG | OPD2 MR = [Rd] * [Rs] {,ss} {, n}
| MR = [Rd] * [Rs], us {, n}
15 0 15 0
Rd =Rs #IM16,
3 OP OPD1 OPD2 OPDE Rd = Rs # [A16]

© Generalplus Technology Inc. PAGE 65 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

15 1]
4 COND oF OFD Jeond label, JMF label
15 0 15 0
GOTO label (unSP - 1.0, the
oP OPDE
same as PC = IM16)
15 0 15 0
& OF OFD OPDE
Goto label (e nSP - 1.1)
15 0 15 0
OF OFD OPDE
CALL label

Therefore, we can find that the number of operand in unSP instruction can be 0, 1, 2 or 3. The location
of operand depends on the addressing mode. We can take 16-bit word group as a unit and arrange

instruction for single word group (short instruction) and double word group (long instruction).

2.3unSP-1.1 Instruction Set

Each instruction subset of instruction set will be listed one by one by the sequence of instruction type.

2.3.1 Data-Transfer Instructions

LOAD Load Register with Memory/lmmediate/Register
Instruction Format Addressin Flags
Syntax Cycles
Word Group 1 Word Group 2 gMode N|Z|S|C

Rd = IM& woor | Rd o) IMBE - 2 IMB
Rd = IM16 woo | Rd | xoocox [Rs IM16 4/5 IM16
Rd = [BP+IMB] woot | Rd o] IMB - 6 [BP+IMB]
Rd = [AG] woo | Rd | xox AG - 516 [AB]
Rd = [A16] woot | Rd | xoocox [Rs AlG 7/8 [A16] N
Rd =Rs woo | Rd | xoocox |Rs - 3’5 R
Rd = {D:}|Rs]
Rd = {D:}[++Rs]

xxx | Rd |xxx|D] @ [Rs - G/7 [R]
Rd = {D:}|Rs—]
Rd = {D:}|Rs++]

© Generalplus Technology Inc. PAGE 66 V1.0 November 26, 2007

Note: The x in word group denotes the data bit of “0” or “1”. They can be fields listed in Table 2.3
except the operand field. The description for operand and addressing mode will be dominated but the
other field ignored briefly. The same rule can be applied for the following tables.

Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X
shows different form according to addressing mode.

IM6, IM16: X is a 6-bit or 16-bit immediate. IM6 will be expanded to16 bits filled with zeros first, and

then stored to Rd.
[BP+IM6]: X is the memory in PAGEOQ addressed as (BP+IM6).

AB6,A16: X is the memory in the PAGEO addressed as (0x00~0x3F) or (0x0000~0xFFFF)

R: X may be register R1~R4, BP, SP or SR.

[R]: X is the memory pointed by offset in Rs. Rs may point data segment in PAGEO as ‘D’ is ignored or
in non-PAGEOQ as ‘D’ is not ignored and its page index depends on DS in SR register. Rs can be
increased or decreased in a word before or after operation. This is only a group of instruction that
either addressed as PAGEO or non-PAGEQ in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may
also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table and all flags will be unresponsive if Rd is PC.

unSP Programmer’s Guide

Examples: R1 = 0x28; /I IM6
R2 = 0x2400; /I IM16
R3 = [BP+0x08]; I/ [BP+IM6]
R4 = [0x30]; 11 A6
BP = [0x2480]; SR = /I A16
R2; /IR
PC = D:[R1++]; /I [R], Write to PC, Cycles:7
STORE Store Register into Memory
Instruction Format Flags
Addressing
Syntax Word Group | Cycles
Word Group 1 Mode N|Z(S|C
2
[BP+IMG] = Rd 0o | Rd [o IME - G [BP+IMB] | -|-|-]| -
[A6] = Rd oo | Rd | oo AB 5/6 [AB]
[A16] = Rd x| Rd [xooxx |Rs Al6 7/8 [A16]

© Generalplus Technology Inc.

PAGE 67

V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Flags
Addressing
Syntax Word Group | Cycles
Word Group 1 Mode |N|Z|S|C
2
{D:}[Rs] = Rd
{D:}++Rs] = Rd
woor | Rd oDl @ |Rs - 617 [R]
{D:}Rs—] = Rd

(D}[Rs++] = Rd

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode.
[BP+IM6]: X is the memory in PAGEO addressed as (BP+IM6).

AB6,A16: X is the memory in PAGEO addressed as (0x00-0x3F) or (0x0000-0OxFFFF)

[R]: X is the memory pointed by offset in Rs. Rs may point data segment in PAGEO as ‘D’ is ignored or
in non-PAGEO as ‘D’ is not ignored and its page index depends on DS in SR register. Rs can be
increased or decreased in a word before or after operation. This is only a group of instruction that
either addressed as PAGEO or non-PAGEQ in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may
also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table if Rd is PC.

Example: [BP+0x08] = R3; /I Write to [BP+IM6]
[0x30] = R4; /I Write to [A6]
[0x2480] = BP; /I Write to [A16]
D:[R4++] = PC; /l Read from PC, Cycles 7
PUSH Push Registers onto Stack
Instruction Format Flags
Addressin
Syntax Word Group | Cycles
Word Group 1 gMode N|Z|S|C
2
PUSH Rx, Ry to [Rs]
xxxx |Rdo| SIZE | Rs - 2n+4 R] -l -] -
Or PUSH Rx to [Rs]

Description: Push a number (number n=1~7, SIZE) of registers Rx-Ry (Rx~RySP) to memory

pointed by Rs decreasingly.

Example: PUSH R3, PC to [SP]; // Push R3 through PC (R7) to SP

© Generalplus Technology Inc. PAGE 68 V1.0 November 26, 2007

unSP Programmer’s Guide

Empty «—3P

FC

SR

BF

R4

R3

Higher address

«—5F

Lower address

Note: PUSH R3, PC to [SP] is equivalent to PUSH PC, R3 to [SP]

POP

Pop Registers from Stack

Syntax
Word Group 1

Instruction Format

Word Group | Cycles

2

Flags
Addressin

gMode |[N|Z |S|C

POFP Rx, Ry from [Rs]
Or POP Rx from [Rs]

ok | Rd [xxx | SIZE

Rs

2n+4

[R] " * * =

Description: Copy a set of memory pointed by Rs consecutively to a set of register Rx-Ry (Rx~Ry

SP) where n=1~7. It is also equivalent to RETF/RETI when Rx~Ry is SR~PC.

Note:

1. When SR is not in the set of Rx ~ Ry, only N and Z flags will be determined by Ry.

2. When SR is in the set of register Rx~Ry, NZSC flags will be changed. However, N and Z will be

eventually determined by Ry.

Example: POP R4, PC from [SP]; // Pop R4 through PC from SP
Before After
D SP— O | Storeto PC
C Z | Storeto SR
B B | Storeto BF
A A | Store to R4
«—35P

POF SR, PC from [SP];

fi It equals io RETF

Higher address

Lower address

© Generalplus Technology Inc.

PAGE 69

V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

Note: POP R4, PC from [SP] is equivalent to POP PC, R4 from [SP]
2.3.2 Arithmetic/Logical-Operation Instructions

This is Arithmetic/Logical-Operation Instructions that carry out the operation as RD = X #Y. X and Y will

show different meanings according to the addressing mode. Because the same explanation for X, Y and

the description for Rs, Rd will be involved in instruction they will be listed in Table 2.4.

Table 2.4 The meanings for X, Y in operation as Rd = X #Y

Addressing Mode X, Y
Xis Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and
e then be operated with X.
IM16 Xis Rs, Y is IM16
[BP+IM6] Xis Rd, Y is the memory in PAGEO addressed as (BP+IM6)
[AB] Xis Rd, Y is the memory in PAGEO addressed as (0x00~0x3F)
[A16] Xis Rs. Y is the memory in PAGEOQ addressed as (0x0000~0xFFFF)
R Xis Rd, Y is Rs.
Xis Rd, Y is the memory address pointed by the offset in Rs. Rs may point
data segment in PAGEOQ as ‘D’ is ignored or in non-PAGEOQ as ‘D’ is not
ignored and its page index depends on DS in SR register. Rs can be
Rl increased or decreased in a word before or after operation. This is only a
group of instruction that either addressed as PAGEOQ or non-PAGEQO in
unSP instruction set.

Note: Rs may be R1~R4, BP, SP, SR and PC. Rd may be R1~R4, BP, SP and SR if the addressing mode
is [BP+IM6]. Rd may also be PC besides [BP+IM6] addressing mode. Cycles will be longer alternatively in

above instruction table and all flags will be unresponsive if Rd is PC.

For shift operation instructions:

] FIQ, IRQ and user routine has their own shift buffers. User does not need to save shift buffer for
interrupt routines.

[] Shift buffer values are unknown after multiplication or filter operations. User should make no

assumptions to its value after the operations.

] Carry flag only couple with ALU operation, not shift operation.
ADD ADD without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|§|C
Rd += IM6&
x| Rd o[IMB - 2 MG AR
Rd = Rd + IM&
© Generalplus Technology Inc. PAGE 70 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C

Rd = Rs + IM16 wod | Rd | oo |Rs IM16 415 IM16
Rd += [BF+IM&]

0o | Rd x| IMG [BP+IME]
Rd = Rd + [BPF+IM&]
Rd += [AB]

oo | Rd ool AB - 5/6 [AB]
Rd = Rd + [Af]
Rd = Rs + [A16] o | Rd | xooox |Rs AlB 7/8 [A16]
Rd+=Rs oo | Rd | soooxx |Rs - 3/5 R
Rd +={D:}[Rs]
Rd += {D:}[++Rs]

o | Rd [xxx|D) @ |Rs - 617 [R]
Rd += {D:}[Rs-]
Rd += {D:}[Rs++]

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd =

X+Y. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 += 0x28; /I M6
R2 = R1 + 0x2400; /' IM16
R3 += [BP+0x08]; I/ [BP+IM®]
R4 += [0x30]; 11 [A6]
BP = R4 + [0x2480]; 11 TA16]
SR += R2; /IR
PC += D:[BP++]; /I Write to PC, Cycles: 7
ADC ADD with Carry
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|/5(C
Rd += IM&, Carry o ,
wo | Rd o) IMB 2 IMB LRURAR
Rd = Rd + IM#&, Carry
Rd=Rs+IM18, Carry | xxxx | Rd | o000 |Rs IM16 4/5 IM16
Rd += [BF+IM&], Carry
Rd = Rd + [BP+IM&], wo | Rd x| IMB 6 [BP+IMEB]
Carry
© Generalplus Technology Inc. PAGE 71 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C

Rd += [AB], Carry .

oo | Rd |xo Af 5/6 [AB]
Rd = Rd + [AB], Carry
Rd =Rs + [A16], Carry | xxxx | Rd | xooxx |Rs A6 7/8 [A16]
Rd += Rs, Carry oo | Rd | xooox |Rs 35 R
Rd +={D:}[Rs], Carry
Rd += {D}[++Rs], Carry|) .

wo | Rd oo |D) @ |Rs 6/7 [R]
Rd += [D:}[Rs--], Carry
Rd += [D:}[Rs++], Carry

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 = 0x28, Carry; //IR1=R1+IM6+C
R2 = R1 + 0x2400, Carry; //IR2=R1+IM16 +C
R3 += [BP+0x08], Carry; /IR3 =R3 + [BP+IM6] + C//R4 =R4 + [A6] + C
R4 += [0x30]; //IBP=R4+[A16]+C//SR=SR+R2+C
BP = R4 + [0x2480], Carry; SR += /[Write to PC, Cycles: 7
R2, Carry;
PC += D:[BP++], Carry;
sSUB Subtract without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
Rd -=IM& .
oo | Rd o MG - 2 MG A RARERY
Rd = Rd — IM&
Rd = Rs - IM16 oo | Rd | xooox |Rs IM16 415 16
Rd -= [BP+IME]
oo | Rd |xoex MG - 6 [BF+IME]
Rd = Rd - [BF+IME]
Rd = [Ag]
Yoo | Rd oo AB - &5/8 [AB]
Rd = Rd - [AB]
Rd = Rs - [A186] Xoooo | Rd | ooooxx |Rs A16 7/8 [A18]
Rd =Rs Moo | Rd | wooooe |Rs - a’h R
© Generalplus Technology Inc. PAGE 72 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C

Rd -= {D:}Rs]

Rd -= {D:}[++Rs]

Yoo | Rd o |D| @ |Rs - 6/7 [R]
Rd -= {D-}Rs-]
Rd -= {D-}[Rs++]

Description: The group of instruction will be executed for subtraction without carry in arithmetical operation, i.e.
Rd = X -Y. X, Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 -= 0x28; /R1=R1-1M6
R2 = R1 - 0x2400; /I R2=R1-1M16
R3 -= [BP+0x08]; /I R3 = R3 — [BP+IM6]
R4 -= [0x30]; /| R4 = R4 — [A6]
BP = R4 - [0x2480]; /I BP = R4 — [A16]
SR -=R2; /' SR=SR -R2
PC -= D:[BP++]; /I Write to PC, cycles: 7
SBC Subtract with Carry
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|§S|C
Rd -= IM8&, Carry
oo | Rd | oo IME 2 IMB

Rd = Rd - IM6, Carry

Rd=Rs-IM16, Carry |0 |Rd| xooox |Rs IM16 4/5 IM16

Rd -= [BP+IM8], Carry

Rd = Rd - [BP+IME], oo | Rd | o IM& - 6 [BP+IME]
Vo[|V |

Carry
Rd -= [A6], Carry

oo | Rd | oo AB - 516 [AB]
Rd = Rd - [Ag], Carry
Rd =Rs-[A16], Carry | o0 |Rd| xooxx |Rs A6 7/8 [A16]
Rd -= Rs, Carry ok [Rd | wocox |Rs - 3/5 R

© Generalplus Technology Inc. PAGE 73 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mede (N|Z|S|C

Rd = [D:}[Rs], Carry

Rd = {D:}[++Rs], Carry

wox |Rdxox|D| @ |Rs - 6/7 R]
Rd -= {D:}[Rs--], Carry
Rd = [D:}[Rs++], Carry

Description: The group of instruction will be executed for subtraction with carry in arithmetical
operation, i.,e. Rd =X -Y - C = X + (~Y) + C. X, Y will have different meanings according to the
addressing mode. See Table 2.4.

Example: R1 -= 0x20, Carry; /IR1T=R1-IM6-C
R2 = R1 - 0x2400, Carry; /IR2=R1-IM16-C
R3 -= [BP+0x08], Carry; /I R3 = R3 - [BP+IM6] - C
R4 -= [0x30], Carry; /IR4=R4 -[AB]-C
BP = R4 - [0x2480], Carry; //BP =R4 -[A16]-C
SR -= R2, Carry; /ISR=SR-R2-C
PC -= D:[BP++], Carry; /I Write to PC, cycles: 7
NEG Negative
Instruction Format Flags
Addressing
Syntax Word Cycles
Word Group 1 Mode NlZ|S|C
Group 2
Rd = -IM6& woo | Rd o) IMB - 2 IM&
Rd =-IM16 wox | Rd | xocoox |Rs 16 475 IM16
Rd = [BP+IMG] woo | Rd o) IMB - i} [BP+IMS]
Rd = -[Ag] o | Rd oo AB - hiB [AB]
Rd = -[A16] waxx | Rd | woeocx |Rs A1B 78 [A16] .
‘\' - -
Rd=-Rs wo | Rd | woomx |Rs - 3/5 R
Rd = -{D:}[Rs]
Rd = -{D:}[++Rs]
xoo | Rd eod|D| @ |Rs - 677 [F]
Rd = -[D:}[Rs-]
Rd = -{D:}[Rs++]

© Generalplus Technology Inc. PAGE 74 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd =
-X = ~X+1. The meaning of X will be described as follow according to the different addressing modes.
IM6, IM16: X is IM6 or IM16. IM6 will be expanded to 16 bit filled with zeros first, and then carry out

negation.
[BP+IM6]: X is the memory in PAGEOQ addressed as (BP+IM6).

[A6], [A16]: X is the memory in PAGEO addressed as (0x00~0x3F) or (0x0000~0xFFFF)

R: X may be R1~BP(R5), SP, SR.

[R]: X is the memory pointed by offset in Rs. Rs may points to data segment in PAGEO as ‘D’ is
ignored or in non-PAGEQ as ‘D’ is not ignored and its page index depends on DS in SR register. Rs
can be increased or decreased in a word before or after operation. This is only a group of instruction
that either addressed as PAGEO or non-PAGEO in unSP instruction set.

Note: Rd may be register R1~R4, BP, SP or SR if the addressing mode is IM6 or [BP+IM6]. Rd may
also be PC besides IM6 and [BP+IM6] addressing mode. Cycles will be longer alternatively in above

instruction table and all flags will be unresponsive if Rd is PC.

Example: R1 =-0x27; /IR1=-1M6
R3 = -[BP+0x08]; /I R3 = - [BP+IM6]
R4 = -[0x30]; /I R4 = - [A6]
BP = -[0x2480]; /I BP = - [A16]
SR =-R2; /I SR=-R2
PC = -D:[BP++]; /I Write to PC, cycles: 7
CMP Compare
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N|Z|S|C
CMP Rd, IM& wox | Rd [xoo| IMG - 2 IM6&
CMP Rs, IM16 wox | Rd | xocox |Rs IM16 4/5 IM16
CMP Rd, [BP+IMB] | »eox | Rd |soex| IMB - 6 [BP+IMB]
CMP Rd, [AB] oo | Rd | oo AB - 5/6 [AB]
CMP Rs, [A16] woex | Rd | xocox |Rs AlG 7/8 [A16] N
CMP Rd, Rs oo | Rd | woooox [Rs - 375 R 1T
CMP Rd, {D:}[Rs]
CMP Rd, {D:}[++Rs]
x| Rd 2o |D) @ |Rs - 6/7 [R]
CMP Rd, {D:}[Rs--]
CMP Rd, {D:}[Rs++]

© Generalplus Technology Inc. PAGE 75 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X -
Y. But its result will not be stored and only affect NZSC flags. X, Y will have different meanings

according to the addressing mode. See Table 2.4.

// Compare R1, IM6
Example: CMP R1, 0x27; CMP R3,

/I Compare R3, [BP+IM6]
[BP+0x08];

/l Compare R4, [A6]
CMP R4, [0x30];

// Compare BP, [A16]
CMP BP, [0x2480];

/l Compare SR, R2

CMP SR, R2; .
CMP PC, D:[BP++]; /I Compare with PC, cycles: 7
MUL Register Multiplication
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z[S|C
MR = Rd * Rs {, ss}
woxx [Rd | S| xooxx |Rs - 12 R -1-1-
MR =Rd * Rs, us

Description: The group of instruction will be executed for multiplication in arithmetical operation, i.e.
MR=Rd*Rs. And “ss” will indicate that two of word data in Rd and Rs are all signed, “us” mean that the
word data Rd is unsigned and that in Rs is signed. Rd, Rs may be register R1~R4, BP. The result is
put into MR, which is a virtual 32-bit register combined from R4 and R3. R4 contains the higher 16 bits
of MR. R3 contains the lower 16 bits of MR.

Example: MR =R2 * R1; /I Two signed values
MR =R1 * R2, us; /I R1 is unsigned and R2 is signed
MR = R3 * R4, ss; /I Two signed values
MULS Sum of Register Multiplication
Instruction Format Flags
Addressing
Syntax Word Group | Cycles
Word Group 1 Mode |N|Z|S|C
2
IMR = [Rd] * [Rs] {,ss}
Ln}
woo | Rd |S|x|SIZE|Rs - 10n+6 R] - -1--
IMR = [Rd] * [Rs], us
{.n}

© Generalplus Technology Inc. PAGE 76 V1.0 November 26, 2007

[|

C“lt'.‘l]‘:::'lllt)[lli'} UnSP Programmel”s GU|de

Description: The group of instruction will be executed in sum of register multiplication. Its result will
be stored into MR register. And “ss” will indicate that two word data pointed by the content in Rd and
Rs are all signed, “us” means that the word data pointed by Rd is unsigned and that pointed by Rs is
signed. The items of operation will be shown by “n” which can be 1~16. 1 is default. See the following
chart. Among which Rd and Rs may be R1, R2, and BP. (Note: To avoid misusing, Rd and Rs cannot

be SP, SR, PC, R3 and R4; moreover, Rd and Rs cannot be set as the same register).

n=-1 Before After
Pointer Rd | Rd |
Mem X1 X1
Rs | Rs|
Mem C1 C1
MR =C1*X1
n=4 Before After
Pointer Rd | Rd .
Mem X1 | X2 | X3 | X4 X1 | X1 | X2 [X3 (When FIR_MOW ON)

Mote: Rd has shifted one position to the right.

Rs
Rs .

v

Mem c1 |C2 |C3 |C4 Cc1 |C2 |C3 |C4

MR = C1*"X1 + C2*X2 + C3"X3 + C4"X%4

Figure 2.1 Inner Multiplication Operation chart

Example: MR =[R2] * [R1], 8; /I The inner multiplication of two signed
MR = [R1] * [R2], us, 2; // R1 is unsigned, R2 is signed. MR = [R2]

*[BP], ss, 4; // Two signed value.

AND Logical AND
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C

Rd &= IM& .

oo | Rd pox | IME - 2 IM& N -] -
Rd = Rd & IM&
Rd = Rs & IM16 wox | Rd | wooooe |Rs IM16 4/5 IM16

© Generalplus Technology Inc. PAGE 77 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S
Rd &= [BP+IME]
weex | Rd x| IME - 6 [BP+IME]
Rd = Rd & [BP+IME]
Rd &= [A6]
o | Rd | xxx AL - 5/6 [AB]
Rd = Rd & [AB]
Rd = Rs & [A16] wox | Rd | xooxx [Rs Al1G TR [A16]
Rd &= Rs wo | Rd | woomx |Rs - 3’5 R
Rd &= {D}[Rs]
Rd &= {D:}[++Rs]
wox | Rd xox|D] @ |Rs - 6/7 [R]
Rd &= {D:}Rs-—]
Rd &= [D:}[Rs++]

Description: The group of instruction will be executed in logical AND operation, i.e. Rd = X & Y. The X

and Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 &= 0x2F; /R1=R1 & IM6
R3 &= [BP+0x08]; I/ R3 = R3 & [BP+IM6]
R4 &= [0x30]; Il R4 = R4 & [A6]
BP = R2 & [0x2480]; // BP = R2 & [A16]
SR &= R2; I/ SR =SR & R2
PC &= D:[BP++]; /I Write to PC, cycles: 7
OR Logical Inclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
Rd |= IM&
wo | Rd |xxx| IMB 2 MG V-] -
Rd =Rd | IM&
Rd=Rs|IM16 wo | Rd | ocoox |Rs IM16 475 IM16
Rd |= [BP+IMB]
wo | Rd |xxx| IM& 5] [BP+IME]
Rd = Rd | [BP+IMB]
Rd |= [AE]
x| Rd | xxx AB 5/6 [AB]
Rd = Rd | [Ag]
Rd = Rs | [A16] wox | Rd | wocoox |Rs A16 7/8 [A16]
Rd |=Rs waxx | Rd | wooox |Rs 3/5 R
© Generalplus Technology Inc. PAGE 78 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles

Word Group 1 Word Group 2 Mode N Z|S
Rd |= {D:}[Rs]
Rd |= [D:}[++Rs]

o | Rd [xxx|D| @ |Rs - 6/7 [R]

Rd |= {D:}[Rs-]
Rd |= [D:}[Rs++]

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 2.4.

Example: R1 |= 0x2F; /I R1=R1|IM6
R3 |= [BP+0x08]; /I R3 = R3 | [BP+IM6]
R4 |= [0x30]; /I R4 = R4 | [A6]
BP = R2 | [0x2480]; /I BP =R2 | [A16]
SR [=R2; /I SR =SR|R2
PC |= D:[BP++]; /I Write to PC, cycles: 7
XOR Logical Exclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|C
Rd = IM6&
oo | Rd [xoo IMB - 2 MG
Rd = Rd * IM&
Rd =Rs " IM16 o | Rd | oocoose (Rs IM16 4/5 IM16
Rd "= [BP+IMB]
oo | Rd | xxx MG - 6 [BP+IMEB]
Rd = Rd * [BP+IM&]
Rd ~= [AB]
ook | Rd | xxx AB - 5/6 [AB]
Rd = Rd ~ [A8] Vv -
Rd = Rs " [A16] x| Rd ook |Rs AlE T/8 [A16]
Rd *~=Rs ook | Rd wooox |Rs - 375 R
Rd = {D:}[Rs]
Rd #= {D:}[++Rs]
woor | Rd |xxx |D @ |Rs - 617 [R]
Rd = [D:}[Rs-]
Rd = {D:}[Rs++]

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X Y.

The X, Y will have different meanings according to the addressing mode. See Table 2.4.

© Generalplus Technology Inc.

PAGE 79

V1.0 November 26, 2007

unSP Programmer’s Guide

Example: R1 A= Ox2F; /R1=R1"IM6
R3 A= [BP+0x08]; /I R3 = R3 A [BP+IM#6]
R4 A= [0x30]; /I R4 = R4 A [A6]
BP = R2 " [0x2480]; // BP = R2 A [A16]
SR A= R2; /I SR =SSR *"R2
PC A= D:[BP++]; /I Write to PC, cycles: 7
TEST Logical Test
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N|lZ|S|C
TEST Rd, IM& wood | Rd oo IMB - 2 IMB
TEST Rs, IM16 wo | Rd | xoooo |Rs IM16 415 IM16
TEST Rd, [BP+IMEB] | xowx | Rd x| IMB - 6 [BP+IMB]
TEST Rd, [A6] wo | Rd o) AB - 5/6 [AB]
TEST Rs, [A16] wo | Rd | xooox |Rs A6 7/8 [A16] J
TEST Rd, Rs woo | Rd | »oecoooe |Rs - 3/h R ‘
TEST Rd, {D:}[Rs]
TEST Rd, {D:}[++Rs]
xoox | Rd [xxx|D| @ |Rs - 6/7 [R]
TEST Rd, {D:}[Rs--]
TEST Rd, {D:}[Rs++]

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However,

its result will not be stored and it only affects NZ flags. The X and Y will have different meanings

according to the addressing mode. See Table 2.4.

Example:

ASR-ALU

TEST R1, 0x27; /I TEST R1 and IM6

TEST R3, [BP+0x08]; /I TEST R3 and [BP+IM6]

TEST R4, [0x30]; /Il TEST R4 and [A6]

TEST BP, [0x2480]; /Il TEST BP and [A16]

TEST SR, R2; /I TEST SR and R2

TEST PC, D:[BP++]; /I TEST PC and D:[BP++], cycles: 7

Register Arithmetic-Shift-Right and Arithmetic/Logical Operation

© Generalplus Technology Inc. PAGE 80 V1.0 November 26, 2007

unSP Programmer’s Guide

Syntax

Instruction Format

Word Group 1

Word Group 2

Cycles

Addressing Flags
Mode

N Z|§ C

Rd += Rs ASKE nn

{,Carry}
Rd -=Rs ASR nn

{,Carry}
CMPF Rd, Rs ASR nn

woo | Rd

XX

nn

Rs

Rd =-Rs ASR nn

Rd &= Rs ASR nn

Rd |- RsASR nn

Rd "= Rs ASR nn
TEST Rd, Rs ASR nn
Rd = Rs ASR nn

wo | Rd

XX

nn

Rs

y

Description: These group of instruction will be executed in arithmetic operation with logical shift right

where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and logical

operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR) and the result is stored to Rd.

Before shifting op:

Rs |B15|B14{B13|B12|B11‘B10‘Be| Ba|Es?| BE‘:|E§5|B4 |53|Bz|51 |ED|

SB|53‘S2|S1|SD|

SB is the shift buffer. Suppose nn=3, after shift op of

ASR: (Arithmetic Shift Right with MSB, which fits for signed)

Rd ||E2 | EN | EO(E15B14B13B12]

E11B10(BS |BS

BY

B&

B5

B4 |B2

Note: Carry flag only couples with ALU operation, not shift operation.

Example:

SR |=R2 ASR 2;

SP += R1 ASR 4, Carry;
R2 =R1ASR 2;

LSL-ALU

/I SR=SR | (R2/2%

IISP=SP+(R1/2%+C
/IR2=R1/ 2

SB

B2B1||B0|S3

Register Logical —Shift-Left and Arithmetic/Logical Operation

© Generalplus Technology Inc.

PAGE 81

V1.0 November 26, 2007

(_-‘-.l-.‘:v.s.r';!lhlt)[u:-; UnSP Programmel”s GU'de

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z S|C

Rd+=Rs LSL nn
{.Carry}
Rd-=Rs LSL nn xxxx | Rd | xx | nn |Rs - 3/5 R RO

{.Carry}
CMP Rd, Rs LSL nn

Rd =-Rs LSL nn
Rd &= Rs LSL nn
Rd |= Rs LSLnn
Rd "= Rs LSL nn
TEST Rd, Rs LSLnn

xxxx | Rd | xx | nn |Rs - 3/5 R V-] -

Rd =Rs L5L nn

Description: The group of instruction will be executed in arithmetic and logical operations with logical
shift left where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and
logical operation with Rd (Rd, Rs ~ SP, PC; Rs ~ SR), and then the result is stored to Rd. See the

following chart.

Before shifting op:

Rs [B15B14B13B12B11B10{ BS |B8 [B7 |B6 | B5| B4 |B3 |BZ |B1| B0 SB|S53|52 (51|50

SB is the shift buffer. Suppose nn=3, after shift op of
LSL: (Logic Shift Left)

R || G (@1 [B15E14B13B12B11|B10| B9 | B8 | BY | B6 |BS5 |B4 | B3 SB|BZ | B B0 53

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |=R2LSL 2; I SR=8SR | (R2<<2)
SP += R1 LSL 4, Carry; //SP=SP+(R1<<4)+C
R2 =R1LSL 2; I/IR2=R1<<2
LSR-ALU Register Logical-Shift-Right and Arithmetic/Logical Operation

© Generalplus Technology Inc. PAGE 82 V1.0 November 26, 2007

unSP Programmer’s Guide

Syntax

Instruction Format Addressing| Flags

Word Group 1

Cycles
Word Group 2 Mode N[Z|S|C

CMF Rd, Rs LSR nn

Rd+=Rs L5R nn { Carry}
Rd-=Rs LSR nn { Carry}

x| Rd

XX

nn

Rs

Rd =-RsLSR nn
Rd &= Rs LSR nn
Rd |= RsLSR nn
Rd *= Rs LSR nn
TEST Rd, Rs LSR nn

Rd = Rs LSR nn

woox | Rd

xX

nn

Rs

3/5 R VY] - |-

Description: The group of instruction will be executed with logical shift right where nn is number of

shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and logical operations with Rd (Rd, Rs ~

SP, PC; Rs ~ SR). Then, the result is stored to Rd. See the following chart.

Before shifting op

Rs B15B14B12B12B11B10

B9 |B&

B7

B6

B5|B4 |B3|B2(B1|BO SB|53|52(S1|50

SB is the shift buffer. Suppose nn=3, then after shift op of

LSR: (Logic Shift Right)

R {[[i0 || [B15E14B13

B12B11

B10

B9

B8 |B7 |B6[B5|B4|B3 SEB|BZ| BN BO| 53

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |=R2LSR 2;
SP += R1 LSR 4, Carry;
R2 =R1LSR 2;

ROL-ALU

I SR=SR | (R2 >> 2)
/ISP =8P+ (R1>>4)+C
/IR2=R1>>2

Register Rotate-Left and Arithmetic/Logical operation

Syntax

Instruction Format Addressing| Flags

Word Group 1

Cycles
Word Group 2 Mode NlZ|S|C

Rd-=Rs ROL nn {,Carry}
CMP Rd, Rs ROL nn

Rd+=Rs ROL nn {,Carry}

HHHK

Rd | xx

nn

Rs

3 |'l 5 R "\'I "‘u'l "\'I "‘u'l

© Generalplus Technology Inc.

PAGE 83 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z[S|C

Rd =-Rs ROL nn
Rd &= Rs ROL nn
Rd |= Rs ROL nn |,

woor | Rd [x¢< | nn |Rs - 3/5 R Vv -] -
Rd #= Rs ROL nn
TEST Rd, Rs ROL nn
Rd = Rs ROL nn

Description: The group of instruction will be executed in arithmetic and logical operations with rotate
shift left where nn is number of position shift and ranged in [1~4]. Or Rs carries out arithmetic and
logical operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR) then the result is stored to Rd. See the

following chart.

Before shifting op:

Rs B15B14|B'I3B'I2B'I'IE!’ID B9|B8(B7|B6|B5|B4|B3|B2|B1|B0 5B|S53|52|51(S0

SB is the shift buffer. Suppose nn=3, after shift op of:

ROL: (Rotate Left with SB)

SB|S0 B'I5I314‘B13 Rd[B12E11B10|B9|B8|B7|B6|B5|B4(B3|B2|B1|B0|53 |52 |5/

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |=R2 ROL 2; /I SR =S8R | (R2 ROL 2)
SP += R1 ROL 4, Carry; /ISP =SP+(R1ROL4)+C
R2 =R1ROL 2; /IR2=R1ROL 2
ROR-ALU Register Rotate-Left and Arithmetic/Logical Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C

Rd+=Rs ROR nn {,Carry}
Rd-=Rs ROR nn {,Carry} | xxxx | Rd | xx | nn | Rs - 3/5 R R R
CMF Rd, Rs ROR nn
Rd =-Rs ROR nn
Rd &= Rs ROR nn
Rd |= Rs ROR nn

oo | Rd | x| nn | Rs - 3/5 R V-] -
Rd = Rs ROR nn

TEST Rd, Rs ROR nn
Rd = Rs ROR nn

© Generalplus Technology Inc. PAGE 84 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed in arithmetic and logical operations with rotate
shift right where nn is number of shifting bits and ranged in [1~4]. Or Rs carries out arithmetic and
logical operations with Rd (Rd, Rs ~ SP, PC; Rs ~ SR). After that, the result is stored to Rd. As

following chart shows.

Before shifting op:

Rs B15B14B'I3‘B'I2E§’I’IB’ID BO|BE|B7|BG |B: B4 |B3|B2|B1|BO SB|S3|52|51|50

SB is the shift buffer. Suppose nn=3, after shift op of
ROR: (Rotate Right with SB)

Rd|s@sl 50 B'IS‘BMB'IS‘B'IEB’H E10|E9|BE|EB7|B6|B5|B4|B3| SB|BAIB1IBOIS3

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROR 2; /I SR = SR | (R2 ROR 2)
SP += R1 ROR 4, Carry: /I SP = SP + (R1 ROR 4) + C
R2 = R1 ROR 2: /IR2 = R1ROR 2

2.3.3 Transfer-Control Instructions

BREAK Software Interrupt
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
IBREAK KICOOOOOCOO0OK - 10 [A16] - -] -

Description: Generate a software interrupt. CPU will jump to interrupt vector [0XO0FFF5] to execute

interrupt service routine.

Example: BREAK; /I Generate a software interrupt
CALL Segmented Far Call
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
CALL Label 000000 Cs6 A8 9 [A22] -l-1-1-

© Generalplus Technology Inc. PAGE 85 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: Call a sub-program. Label can be anywhere in the memory space. Both PC and SR are
pushed to stack automatically before calling the sub-program. CPU then load CS of SR with CS6 and
PC with A16 to jump to Label.

Example: CALL sub1; /I CALL sub1
[result] = R1; /I Store the return value of sub1
Sub1: .PROC
PUSH BP to [SP];
BP =SP + 1;
R2 = [BP+3]; /l Parameter 1
R3 = [BP+4]; /I Parameter 2
R1=0; /l Return
value RETF;
.ENDP
JUMP Conditional/Unconditional Jump
Instruction Format Flags
Addressing
Syntax Word Group | Cycles
Word Group 1) Mode NZ|S|C
2
Jcond label (not-tak
COND | xxxxxx | S| IMG - PC+IMG -1-]-
JMF label en)/4
(taken)

Description: A group of conditional and unconditional short jump instruction to local label. Each flag in
SR will be checked as routine jump condition. If condition is met, PC will jump to related addresses
within63 words. If the condition is not true, PC will go to the position of next instruction. See
Conditional Branch Table for details.

User can use “S”+Jcond (ex. SJG Label) format. Such command will become a smart branch that
assembler will pick up least code size to encode this branch for backward jump (depending on the

distance of this instruction’s address with PC and encode it with short or long jump).

Table 2.5 Conditional branch operations

Cond OP Codes Symbol Operand Type Description Flags I]

© Generalplus Technology Inc. PAGE 86 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

0000 JCC — Carry clear C=0
0000 JB Unsigned Below C=0
0000 JNAE Unsigned Not above and equal C=0
0001 JCS — Carry Set C=1
0001 JNB Unsigned Not below C=1
0001 JAE Unsigned Above and equal C=1
0010 JSC — Sign clear S=0
0010 JGE Signed Great and equal S=0
0010 JNL Signed Not less S=0
0011 JSS — Sign set S=1
0011 JNGE Signed Not great than S=1
0011 JL Signed Less S=1
0100 JNE — Not equal Z=0
0100 JNZ — Not zero Z=0
0101 Jz — Zero Z=1
0101 JE — Equal Z=1
0110 JPL — Plus N=0
0111 JMI — Minus N=1
1000 JBE Unsigned Below and equal Not (Z=0 and C=1)
1000 JNA Unsigned Not above Not (Z=0 and C=1)
1001 JNBE Unsigned Not below and equal Z=0 and C=1
1001 JA Unsigned Above Z=0 and C=1
1010 JLE Signed Less and equal Not (Z=0 and S=0)
1010 JNG Signed Not great Not (Z=0 and S=0)
1011 JNLE Signed Not less and equal Z=0 and S=0
1011 JG Signed Great Z=0 and S=0
1100 JvC Signed Not overflow N=S
1101 JVS Signed Overflow N!=S
1110 JMP Unconditional jump
Example: CMP R1, R2;
JNE labelf; // Jump to label1 when not equal
JMP labe2; /I Unconditional jump to label2

© Generalplus Technology Inc.

PAGE 87

V1.0 November 26, 2007

unSP Programmer’s Guide

RETF Return from Subroutine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
RETF COCCOOOOCKNNN -) [A22] VI V|

Description: RETF will pop SR and PC from stack and return from subroutine. Note that the SR and

PC are popped back after RETF. Therefore, they are the same with those before calling sub-programs.

Example: sub1: .PROC

RETF; /I Return from sub1
ENDP
RETI Return from Interrupt Service Routine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
RETI XN HHK - 8 [A22] N IR I

Description: RETI will pop SR and PC from stack and then return from interrupt service routine. Note

that the SR and PC are popped back after RETI. Therefore, they are the same as those of before

interrupt responses.

Example: .TEXT
.PUBLIC _IRQ1
_IRQ1:

RETI, /I Return from IRQ1

GOTO Unconditional Far Jump
Instruction Format Addressing Flags
Syntax Cycles

Word Group 1 Word Group 2 Mode N|Z|S|C
GOTO label HOOCHICKIK Cs6 Al16 5 [A22] -l -1-]-

© Generalplus Technology Inc. PAGE 88 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: Going to user’s specified address unconditionally. In unSP 1.0, Target address is limited

to the 64K word of current page. In unsP1.1, the whole 4M word addressing space is allowable.

Example:

GOTO loop;

// Jump to loop unconditionally

2.3.4 Miscellaneous Instructions

FIR_MOV ON Enable Automatic Data Movement for FIR Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
FIR_MOV ON MO0 - 2 - - -1-

Description: Enable automatic data movement for FIR operations. It affects the behavior of FIR, which

is global. Hence, use it in interrupt with care.

Example:

_IRQ1:

PUSH R1, R4 to [SP];
CALL F_IRQ1_Service_10kHz; // Sample, FIR, output
POP R1, R4 from [SP];

RETI;

F_IRQ1_Service_10kHz:

R1 = Data_Entry;
R2 = Conf_ Entry;
FIR_MOV ON;
MR = [R1] -ra, N;
FIR_MOV OFF;
R3 =R4 LSR 4;
R3 = R3 LSR 4;
R3 = R3 LSR 4;
R3 = R3 LSR
3

[P_DAC1] =R3;
RETF;

/I R1 points to sample vector
/I R2 points coefficient vector
/I Enable automatic data movement for FIR operations

/I Rank n FIR calculation

/I MR / 2"° obtains 16-bit output

// Output to DAC1

© Generalplus Technology Inc.

PAGE 89 V1.0 November 26, 2007

unSP Programmer’s Guide

FIR_MOV OFF Register Rotate-Left and Arithmetic/Logical operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|IS|C
FIE_MOV OFF OO0 - 2 - -l -1 -

Description: Disable automatic data movement for FIR operations. It affects the behavior of FIR,

which is global. Hence, use it in interrupt with care.

FIQ ON Enable FIQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
FIQ ON H0O000000000K | F | | - 2 - -1-1-]-

Description: Enable FIQ

Example: FIQ ON; /l Enable IRQ
FlQ OFF Disable FIQ
Instruction Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z(S|C
FIQ OFF xooocoooooeox | F - 2 - -1-1-1-

Description: Disable FIQ

Example: FIQ OFF // Disable FIQ
IRQ ON Enable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
IRC ON xo00oo0ooooa | F | - 2 - - - -

Description: Enable IRQ

© Generalplus Technology Inc. PAGE 90 V1.0 November 26, 2007

unSP Programmer’s Guide

Example: IRQ ON; /I Enable IRQ
IRQ OFF Disable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ[S|C
IRQ OFF wooeooooooosxx. | F | - 2 - -1-1-1-

Description: Disable IRQ

Example: IRQ OFF // Disable IRQ
INT Interrupt Set
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
INT FIQ
INT IRQ
xooooocoeoocox | F | - 2 - S I
INT FIQ, IRQ
INT OFF

Description: Set FIQ/IRQ flags.

Example: INT FIQ; /I Enable FIQ, disable IRQ
INT FIQ, IRQ; /I Enable IRQ, FIQ
INT OFF; /I Disable both IRQ and FIQ
NOP No Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
NOP HOOOOCOOCONCO00 - 4 . B I I

Description: The instruction will generate waiting time of 4 cycles for delay and other purpose. This is

implemented as an unconditional jump to next address.

© Generalplus Technology Inc. PAGE 91 V1.0 November 26, 2007

unSP Programmer’s Guide

Example: Delay_Loop:

NOP;

CMP R1, OxFFFF;
JA Exit_Loop;
R1+=1;

JMP Delay_Loop;

Exit_Loop:

/I Waiting

/I Search for end waiting flags
// End waiting

[/l Waiting for delay counting

© Generalplus Technology Inc.

PAGE 92

V1.0 November 26, 2007

unSP Programmer’s Guide

3 unSP -1.0 Instruction Set

3.1 General Description

unSP 1.0 instruction set is the same as unSP 1.1 instruction set except for the instruction format, cycles,
and affected flags. So, while introducing unSP 1.0 instruction set, instruction format, cycles, and affected

flags are mainly described.

3.2 unSP-1.0 Instruction Cycles

LOAD Load Register with Memory/lmmediate/Register
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
Rd = IMB& wooo |Rd o MG - 3 IM&
Rd = IM16 wood |Rd poooco Rs IM16 G6/8 IM16
Rd = [BP+IME] wood |Rd oo IMe - a [BP+IMB]
Rd = [A8] wooo |Rd o AB - 6/8 [A8]
Rd = [A18] wood |Rd poooco Rs A16 9/ 1 [A186] ,
V-

Rd=Rs oo [Rd xooooo Rs - 3/8 R
Rd = {D:}[Rs]
Rd = {D:}++Rs]

¥ [Rd xxx |D|@ |Rs - 719 [R]
Rd = {D:}Rs—]
Rd = {D:}Rs++]

STORE Store Register into Memory
Instruction Format Addressing Flags
Syntax Cycles

Word Group 1 Word Group 2 Mode N|Z[S|C
[BF+IME] = Rd 00 | Rd |0 IME - 8 [BP+IME]
[AG] = Rd 00 | Rd oo AB - 6/8 [Af]
[A168] = Rd xox | Rd | xooox |Rs AlB 9711 [A16]
{D:}Rs] = Rd N
{D:}++Rs] = Rd)

xixx | Rd o |D| @ [Rs - 719 [R]

{D:}Rs--] = Rd
[D}[Rs++] = Rd

© Generalplus Technology Inc. PAGE 93 V1.0 November 26, 2007

unSP Programmer’s Guide

PUSH

Push Registers onto Stack

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S[C
PUSH Rx, Ry to [Rs]
xxxx |Rd|xxx| SIZE |Rs - an+4 [R] -1 --1-
Cr PUSH Rx to [Rs]

POP Pop Registers from Stack
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
POP Rx, Ry from [Rs] an+4 f
xxxx |Rd [xxx |SIZE |Rs - [R] G L
Or POP Rx from [Rs] 3n+6
ADD Add without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ[S(C
Rd += IM&
xooo | Rd [xox IM& - 3 IME
Rd = Rd + IM&
Rd = Rs + IM16 woo | Rd | xwooxx |Rs IM16 6/8 IM16
Rd += [BP+IME&]
woo | Rd oo IM& 8 [BP+IME]
Rd = Rd + [BP+IME]
Rd += [Ag]
xooo | Rd [xox AB - 6/8 [AB] o
Rd = Rd + [Ag] R
Rd = Rs + [A16] xioox | Rd | xocoooxx |Rs Al1B g9/n [A16]
Rd +=Rs woo | Rd | xooox |Rs - 3/8 R
Rd += {D}|Rs]
Rd += {D:}[++Rs]
xxx | Rd [xxx |D) @ |Rs - 7/9 [R]
Rd += {D}|Rs—]
Rd += {D:}|Rs++]
© Generalplus Technology Inc. PAGE 94 V1.0 November 26, 2007

unSP Programmer’s Guide

ADC Add with Carry
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z(S
Rd +=IM&, Carry
ok | Rd |xxx| IME - 3 IME |,
Rd = Rd + IM&, Carry W
Rd=Rs + IM16, Carry | xxxx | Rd | oooxx [Rs IM16 G/8 IM16
Rd += [BP+IM&], Carry
Rd = Rd + [BP+IME], | oo | Rd oox| IMG - 8 [BP+IME]
Carry
Rd += [AB], Carry
ook | Rd | xxx AB - G/8 [AB]
Rd = Rd + [AB], Carry
Rd = Rs + [A16], Carry | xoox | Rd | ocoox |Rs AlB 9/M [A18]
Rd += Rs, Carry ok | Rd | xxooix |Rs - 3’8 R
Rd += {D:}[Rs], Carry Ao
LR
Rd += {D:}[++Rs],
Carry
wox | Rd | xxx|D| @ |Rs - 7/9 [R]
Rd += {D:}[Rs--], Carry
Rd += {D:}[Rs++],
Carry
SUB Subtract without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z|S
Rd -=IM& oo
oo | Rd {0 IM& - 3 MG VR
Rd = Rd - IM&
Rd =Rs - IM16 wooX | Rd | oo [Rs IM16 6/8 IM16
Rd = [BP+IMBG]
oo | Rd | o MG - 8 [BP+IME]
Rd = Rd - [BP+IM#&]
Rd = [AB]
0000 | Rd |0 AG - 6/8 [AB]
Rd = Rd - [Af]
Rd = Rs - [A16] x| Rd | xooomx [Rs A6 9/ 1 [A16]
Rd =Rs wook | Rd | xoooox [Rs - 3’8 R
© Generalplus Technology Inc. PAGE 95 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S(C
Rd -= {D:}[Rs]
Rd -= {D:}[++Rs]
xxxx | Rd ox|D| @ |Rs - 779 [R]
Rd -= {D:}[Rs-]
Rd -= {D:}[Rs++]
SBC Subtract with Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
Rd -= IM&, Carry
0o | Rd [xoxx IME - 3 IMe
Rd = Rd - IM&, Carry
Rd=Rs-IM16, Carry |xox | Rd | xooox |Rs IM16 6/8 IM16
Rd = [BP+IME], Carry
Rd = Rd - [BP+IME], woo | Rd oo IMB - 8 [BP+IME]
Carry
Rd = [AB], Carry N
o | Rd [0 AB - 6/8 [AB] U RAE
Rd = Rd - [AG], Carry
Rd = Rs + [A16], Carry | oo | Rd | o0 |Rs AlB 9/ 1 [A16]
Rd -=Rs, Carry waxx | Rd | oooox |Rs - 3/8 R
Rd -= {D-}Rs], Carry
Rd -= {D:}[++Rs], Carry
xxxx | Rd [|D| @ |Rs - 7/9 [R]
Rd -= {D:}[Rs--], Carry
Rd = {D:}|[Rs++], Carry
NEG Negative
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd = -IM8 x| Rd [oo| IMB - 3 IMG VI -
Rd = -IM16 woor | Rd | xoooex |Rs IM16 6/8 InM16G
Rd = -[BP+IM#] xox | Rd oo IME - B [BP+IM8]
Rd = -[A#] oo | Rd oo AB - 6/8 [AB]
Rd = JA16] xxx | Rd | xooxx |Rs AlG 9/1 [A16]
Fd=-Rs o | Rd | xeocox |Rs - 3/8 R

© Generalplus Technology Inc. PAGE 96 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Woeord Group 1 Woeord Group 2 Mode Z|s
Rd = -{D:}[Rs]
Rd = {D:}[++Rs]
xxxx | Rd [xxx|D) @ [Rs - 779 [R]
Rd = -{D:}[Rs-]
Rd = -{D:}[Rs++]
CMP Compare
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z|S
CMP Rd, IM& oo | Rd o M8 - 3 MG
CMP Rs, IM16 xaxx | Rd | xooox | Rs IM16 6/8 IM16
CMP Rd, [BP+IME] | xoox | Rd | 1ls - g8 [BP+IME]
CMP Rd, [A6] ook | Rd o AB - 6/8 [A6]
CMP Rs, [A16] wook | Rd | »oose |Rs A16 9/ 11 [A18] |
v
CMP Rd, Rs wxxx | Rd | xoooxe |Rs - 378 R
CMP Rd, {D:}[Rs]
CMP Rd, {D:}[++Rs]
wo | Rd pox|D] @ |Rs - 719 [R]
CMP Rd, {D}[Rs--]
CMP Rd, {D:}[Rs++]
MUL Register Multiplication
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
MR =Rd* Rs {, ss}
oot | Rd [S] oo |Rs - 12 R - -] -
MR =Rd*Rs, us

MULS

Sum of Register Multiplication

Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z|5
© Generalplus Technology Inc. PAGE 97 V1.0 November 26, 2007

unSP Programmer’s Guide

MR = [Rd] * [Rs] {,55}
{n} .
wox | Rd |S|x | SIZE|Rs - 10n+ 8 R] -1-1-1-
MR =[Rd] * [Rs], us
{,n}
AND Legical AND
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C

Rd &= IM&

wox | Rd o IM& - 3 MG
Rd = Rd & IM6&
Rd =Rs & IM16 woox | Rd | xooox |Rs IM16 6/8 IM16
Rd &= [BF+IME]

wo | Rd x| IME -] [BP+IME]
Rd = Rd & [BP+IM&]
Rd &= [A6]

ook | Rd [0 AB - G6/8 [AB] o
Rd = Rd & [Af] V-
Rd = Rs & [A16] woox | Rd | xoooe |Rs Al6 911 [A16]
Rd &= Rs wox | Rd | xooox |Rs - 3/8 R
Rd &= {D:}[Rs]
Rd &= {D:}[++Rs]

woox | Rd [xxx |D| @ |Rs - 79 [R]
Rd &= {D:}[Rs--]
Rd &= {D:}[Rs++]
OR Logical Inclusive OR

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C

Rd |= IM& |

oo | Rd oo MG - 3 M6 V|-
Rd =Rd | IM&
Rd=Rs | IM16 x0o | Rd | oooxx |Rs IM16 6/8 IM16
Rd |= [BP+IME]

oo | Rd o] IME - 8 [BP+IME]
Rd = Rd | [BP+IME&]
Rd |= [AB]

oo | Rd [0 A - 6/8 [A6]
Rd = Rd | [AB]
Rd = Rs | [A16] wooo | Rd | oo |Rs A1B 9/M [A16]
Rd |=Rs wook | Rd | oo |Rs - 3/8 R

© Generalplus Technology Inc. PAGE 98 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
Rd |= {D}[Rs]
Rd |= {D}[++Rs]
w000 | Rd |xxx (D) @ |Rs - 779 [R]
Rd |= {D}[Rs-]
Rd |= {D}[Rs++]
XOR Logical Exclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
Rd *= IM&
oo | Rd oo IM& - 3 IMG
Rd =Rd " IM6&
Rd = Rs *IM16 o | Rd | xoooxx [Rs IM16 6/8 IM16
Rd "= [BF+IM8]
oo | Rd |xexx MG - g8 [BP+IME]
Rd = Rd * [BF+IM8&]
Rd *= [Ag]
xxx | Rd [xxx AG - 6/8 [AB])
Rd = Rd * [Ag] U I I
Rd = Rs " [A16] xxxx | Rd | xo0mx |Rs A6 9/ 1 [A16]
Rd *=Rs wok | Rd | oo |Rs - 3/8 R
Rd *= [D}[Rs]
Rd #= {D}[++Rs]
wox | Rd oDl @ [Rs - 7/9 [R]
Rd *= {D:}[Rs--]
Rd "= [D}[Rs++]
TEST Logical Test
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Weord Group 2 Mode N(Z[S|C
TEST Rd, IM8 xwoo | Rd o[IMB - 3 IM6 V] -
TEST Rs, IM16 waoox | Rd | wooox |Rs IM16 6/8 IM16
TEST Rd, [BP+IM&] | oo | Rd [xxx M6 - 8 [BP+IMB]
TEST Rd, [AG] woo | Rd | xox AB - 6/8 [AB]
TEST Rs, [A16] x| Rd | xooox |Rs Alg 9/ 1 [A16]
TEST Rd, Rs woot | Rd | xooox |Rs - 3/8 R
© Generalplus Technology Inc. PAGE 99 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Woeord Group 1 Word Group 2 Mode NI[Z|S|C
TEST Rd, {D:}[Rs]
TEST Rd, {D:}[++Rs]
xxx | Rd |[xxx|D) @ [Rs - 779 [R]
TEST Rd, {D-}[Rs-]
TEST Rd, {D:}[Rs++]
ASR-ALU Register Arithmetic-Shift-Right and Arithmetic/Logical Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd += Rs ASR nn { Carry}
Rd -=Rs ASR nn {,Carry} | 000t | Rd | xx | nn |Rs - 3/8 R HEYRURY
CMP Rd, Rs ASR. nn
Rd =-Rs ASR nn
Rd &= Rs ASR nn
Rd |- Rs ASR nn ,
ool | Rd | xx | nn |Rs - 3/8 R Vv - |-
Rd "= Rs ASR nn
TEST Rd, Rs ASR nn
Rd = Rs ASR nn
LSL-ALU Register Logical-Shift-Left and Arithmetic/Logical Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
Rd += Rs L5L nn {,Carry}
Rd -=Rs LSLnn {,Carry} | x| Rd | xx | nn |Rs - 3/8 R Y
CMP Rd, Rs LSL nn

© Generalplus Technology Inc. PAGE 100 V1.0 November 26, 2007

unSP Programmer’s Guide

Rd = Rs LSL nn
TEST Rd, Rs LSL nn
RFd=Rs L5Lnn

Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
Rd=-Rs LSLnn
Rd &= Rs LSL nn
Rd |- Rs LSL nn
woo | Rd [xx [nn [Rs - 3/8 R VI v|-]-

LSR-ALU

Register Logical-Shift-Right and Arithmetic/Logical Operation

Syntax

Instruction Format

Word Group 1

Word Group 2

Cycles

Addressing| Flags

Mode NIZIS|C

Rd += Rs LSR nn {,Carry}
Rd -=Rs LSR nn {,Carry}
CMP Rd, Rs LSR nn

XK

Rd|xx| nn

Rd=-RsLSR nn

Rd &= Rs L5R nn
Rd |= Rs LSR nn

Rd = Rs LSR nn
TEST Rd, Rs LSR nn
Rd=Rs LSR nn

XXX

Rd|xx| nn

Rs -

ROL-ALU

Register Rotate-Left and Arithmetic/Logical Operation

Syntax

Instruction Format

Word Group 1

Word Group 2

Cycles

Addressing
Mode

Flags

Z|5(C

Rd += Rs ROL nn {,Carry}
Rd -= Rs ROL nn {,Carry}
CMP Rd, Rs ROL nn

XX

xX

Rd nn |Rs

3/8

Rd=-Rs ROL nn

Rd &= Rs ROL nn

Rd |- Rs ROL nn

Rd #= Rs ROL nn
TEST Rd, Rs ROL nn
Rd = Rs ROL nn

xX

xX

Rd nn |Rs

3/8

© Generalplus Technology Inc.

PAGE 101

V1.0 November 26, 2007

unSP Programmer’s Guide

ROR-ALU Register Rotate-Right and Arithmetic/Logical Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ S|C
Rd += Rs ROR nn {,Carry}
Rd -= Rs ROR nn {,Carry} Rd|xx|nn|Rs 3/8 R CARARY
CMP Rd, Rs ROR nn
Rd =-Rs ROR nn
Rd &= Rs ROR nn
Rd |= Rs ROR nn K0
Rd |xx|nn|Rs 3/ R VN -
Rd "= Rs ROR nn
TEST Rd, Rs ROR nn
Rd =Rs ROR nn
BREAK Software Interrupt
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
BREAK HIOOOOOOOONO000K - 13 [A18] -1-1-1-
CALL Segmented Far Call
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NfZ[S|C
CALL label HOOCOO00MX C56 A16 13 [A22] -1-1-1-
JUMP Conditional/Unconditional Jump
Instruction Format Flags
Addressing
Syntax Word Group | Cycles
Word Group 1 ’ Mode N|Z|S|C
3
Jcond label (not-tak
COND | xooxx [S| IMB - PC+IMB -1 -1-
JMP label en)/ 5
(taken)
© Generalplus Technology Inc. PAGE 102 V1.0 November 26, 2007

unSP Programmer’s Guide

RETF Return from Subroutine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ S| C
RETF HOCOOOOO0OOO00O0 - 12 [A22] RV
RETI Return from Interrupt Service Routine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ[S|C
RETI XHOCOOCOOOMNK - 12 [A22] R
GOTO Unconditional Far Jump in Page
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NfZ[S|C
GOTO label HCOO000C00ON000M Al6 12 [A186] - |-
FIR_MOV ON Enable Automatic Data Movement for FIR Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NfZ[S|C
FIR_MOV ON OO - 3 - -1 -1 -
FIR_MOV OFF Disable Automatic Data Movement for FIR Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
FIR_MOV OFF 000NN - 3 - -1-|-
FIQ ON Enable FIQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
FIQ ON woooooooooeox | F | | - 3 -1-1-1-

© Generalplus Technology Inc.

PAGE 103

V1.0 November 26, 2007

unSP Programmer’s Guide

FlQ OFF Disable FIQ
Instruction Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N[Z|S|C
FICQ OFF wococooooooox | F I - 3 - -1-1-1-
IRQ ON Enable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ| S|C
IRC ON xooooooooooeae | F - 3 - -1-1-1-
IRQ OFF Disable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N ZS|C
IRQ OFF H000o0o0ooeoe | F | - 3 - -1-1-1-
INT Interrupt Set
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|IS|C
INT FIQ
INT IRQ
xooooocoeoocox | F | - 3 - -1-|-
INT FIQ, IRQ
INT OFF
NOP No Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
NOP HOO0O0OO00OOO0000 - 5 -1-1-1-
© Generalplus Technology Inc. PAGE 104 V1.0 November 26, 2007

unSP Programmer’s Guide

4 unSP -1.2 Instruction Set

4.1 unSP-1.2 Instruction Set

4.1.1 Data-Transfer Instructions

LOAD Load Register with Memory/lmmediate/Register
Syntax Instruction Format Cycles Addressing Flags
Woeord Group 1 Word Group 2 Mode N[Z[S|C
Rd = IMB woo | Rd o MG - 2 MG
Rd = IM16 woex | Rd | wooooe |Rs M6 475 IM16
Rd = [BP+IME] wox | Rd oo| IMB - B [BP+IME]
Rd = [Af] xooo | Rd [xxx| AS - 516 [AG] V(] -]-
Rd = [A16] xod | Rd | owoox W] Rs AlB 7/8 [A16]
Rd=Rs wox | Rd | woooeose |Rs - 35 R
Rd = [D}[Rs@] wox | Rd oo Dl @ |Rs - 6/7 [R]

Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X

shows different form according to addressing mode. The prefix of source register

Rs@ Meaning
Rs No increment/decrement
Rs-- After load, Rs= Rs-1
Rs++ After load, Rs= Rs+1
++Rs Before load, Rs= Rs+1
Examples: R1 = 0x28; // IM6
R2 = 0x2400; /I IM 16
R3 = [BP+0x08]; // [BP+IM6]
R4 = [0x30]; Il A6
BP = [0x2480]; /I A16
SR =R2; /IR
PC = D:[R1++]; /I [R], Write to PC, cycles:7

© Generalplus Technology Inc.

PAGE 105

V1.0 November 26, 2007

unSP Programmer’s Guide

STORE Store Register into Memory
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N ZlS|C
[BP+IME] = Rd ®0ox | Rd [xxx| IME - 6 [BP+IME]
[AB] = Rd x000 | Rd [xxx AB - 5/6 [AB]
[A16] = Rd ®0x | Rd | xoox |W|Rs AlB 7i8 [A16]
[D}Rs@] = Rd xox | Rd ox|D| @ [Rs - 6/7 [R]

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode. The prefix of source register:

Rs@ Meaning
Rs No increment/decrement
Rs-- After load, Rs= Rs-1
Rs++ After load, Rs= Rs+1
++Rs Before load, Rs= Rs+1
Example: [BP+0x08] = R3; /I Write to [BP+IM6]
[0x30] = R4; /I Write to [A6]
[0x2480] = BP; /I Write to [A16]
D:[R4++] = PC; /I Read from PC, Cycles 7
PUSH Push Registers onto Stack
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
PUSH Rx, Ry to [Rs]
xxxx |Rd| xx [n |Rs - 2n+4 [R] -l -1-]-
Or PUSH Rx to [Rs]

Description: Push a number (number n=1~7, SIZE) of register Rx-Ry (Rx~RySP) to memory pointed
by Rs decreasingly.

Example: PUSH PC, R3 to [SP]; // Push PC(R7) through R3, and N=5

© Generalplus Technology Inc. PAGE 106 V1.0 November 26, 2007

unSP Programmer’s Guide

Higher address

Lower addrass

Before After

<8P

Plm|O(Oo|m

R1
R2
R3
R4
BP
SR
PC

m|@|(o | @] =

Note: PUSH R1, BP to [SP] is equivalent to PUSH BP, R1 to [SP].

FPOP Pop Registers from Stack
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z|S
POP Rx, Ry from [Rs]
xxxx | Rd [xxx| n |Rs - 2n+4 [R] - -
Or POP Rx from [Rs]

Description: Copy a set of memory pointed by Rs consecutively to a set of register Rx-Ry (Rx~Ry SP)

where n=1~7.

Example: POP P4, PC from [SP]; // Pop R4 through PC, and N=4
Before After
SP
Higher address E E =-3F R1
D D R2
C C R3
B B R4 A
A =-5P A BF B
Lower address SR C
PC D
© Generalplus Technology Inc. PAGE 107 V1.0 November 26, 2007

G

Generalplus UnSP Programmel”s GU|de

4.1.2 Data Processing Instructions

Data Processing Instructions include ALU Operation, Bit Operation, Shift Operation, Mul Operation, Div
Operation, EXP Operation, NOP, etc..

ALU Operation Instructions that carry out the operation as RD = X # Y. X and Y will show different
meanings according to the addressing mode. Because the same explanation for X, Y and the description

for Rs, Rd will be involved in instruction they will be listed in Table 4.1.

Table 4.1 The meanings for X, Y in operation as Rd = X#Y

Addressing
X, Y
Mode
Xis Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and then be
IM6

operated with X.

IM16 XisRs, Y is IM16

[BP+IM6] | Xis Rd, Y is the memory in PAGEO addressed as (BP+IMG6)

[A6B] Xis Rd, Y is the memory in PAGEOQ addressed as (0x00~0x3F)

[A16] Xis Rs. Y is the memory in PAGEO addressed as (0x0000~0xFFFF)

R XisRd, Yis Rs.

{D:}IR] Xis Rd, Y is the memory address pointed by the offset in Rs. Rs may point data
{D:}R-] segment in PAGEO as ‘D’ is ignored or in non-PAGEQ as ‘D’ is not ignored and its
{D:}[R++] | page index depends on DS in SR register. Rs can be increased by 1 before ALU

{D:}[++R] | operation or increased/decreased by 1 after ALU operation.

Note:

B For 16-bit direct memory addressing, there are two kinds of instruction format:
® Rd=Rs#[A16]; (W=0)
® [A16]=Rd#Rs; (W=1)

B On the Cycles column, the number after ‘/’ denotes writing to PC.

B The prefix of source register:

Rs@ Meaning
Rs No increment/decrement
Rs-- After ALU_OP, Rs=Rs-1

Rs++ After ALU_OP, Rs=Rs+1

++Rs Before ALU_OP, Rs=Rs+1

© Generalplus Technology Inc. PAGE 108 V1.0 November 26, 2007

unSP Programmer’s Guide

ADD ADD without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd +=IMB
oo | Rd | MG - 2 MG
Rd = Rd + IM&
Rd =Rs + IM16 xexx | Rd | xooocoe |Rs IM16 4/5 IM16
Rd += [BP+IMB]
wekx | Rd oo MG G [BP+IME]
Rd = Rd + [BP+IME&]
Rd += [A6] VIV
0o | Rd | o AG - 576 [AG]
Rd = Rd + [AB]
Rd = Rs + [A16]
wood | Rd | oo W] Rs A16 7/8 [A16]
[A16]=Rd +Rs
Rd +=Rs woo | Rd | oo |Rs - 375 R
Rd += {D}[Rs@] woo | Rd oo |D| @ |Rs - 6/7 [R]

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd = X +

Y. X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 +=0x28; /I M6
R2 = R1 + 0x2400; /1 IM16
R3 += [BP+0x08]; I/ [BP+IM6]
R4 += [0x30]; /1 [AB]
BP = R4 + [0x2480]; 1 [A16]
[0x2480] = BP + R2; /I [A16], BP + R2 is assigned to MEM[0x2480]
SR +=R2; /IR
PC += D:[BP++]; /I Write to PC, cycles: 7
ADC Add with Carry
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
Rd += IM8, Carry R
xoxx | Rd ox| IME - 2 IMG URIE
Rd = Rd + IM8, Carry
Rd=Rs + IM16, Carry | xxxx | Rd | »oooox |Rs IM16 475 IM16

© Generalplus Technology Inc. PAGE 109 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C

Rd += [BP+IME&], Carry
Rd = Rd + [BP+IM&], |00 | Rd x| IMB - & [BP+IME]
Carry
Rd += [AE], Carry

)0k | Rd [0 AG - 5/6 [AB]
Rd = Rd + [AG], Carry
Rd = Rs + [A16], Carry

xxxx | Rd | xooox |W|Rs A6 78 [A16]
[A16] = Rd + Rd, Carry
Rd +=Rs, Carry xxxx | Rd | »oooxx |Rs - 375 R
Rd += {D:}[Rs@],

ok | Rd [|[D) @ |Rs - 67 [R]
Carry

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1=0x28, Carry; /IR1=R1+IM6+C
R2 = R1 + 0x2400, Carry; /IR2=R1+IM16 +C
R3 += [BP+0x08], Carry; I/ R3=R3 + [BP+IM6] + C
R4 += [0x30]; //R4=R4 +[AB] + C
BP = R4 + [0x2480], Carry; //BP=R4 +[A16]+C
[0x2480] = BP + R2, Carry; /[TA16], BP + R2 + C is assigned to MEM[0x2480]
SR += R2, Carry; IISR=SR+R2+C
PC += D:[BP++], Carry; /I Write to PC, cycles: 7
SUB Subtract without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
Rd -=IM& N
xoo | Rd [0 IME - 2 IM& URER
Rd=Rd-IM&
Rd = Rs - IM16 oo | Rd | xooox |Rs IM16 4/5 IM16
Rd -= [BP+IME]
xoox | Rd [xox IME - 6 [BP+IME]
Rd = Rd - [BF+IME]
Rd -= [AB]
xoor | Rd oo AB - 5/6 [AB]
Rd = Rd - [AB]
© Generalplus Technology Inc. PAGE 110 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N[Z[S|C
Rd = Rs - [A16]
x| Rd | ook (W Rs A6 7/8 [A16]

[A16] = Rd-Rs

Rd-=Rs wox | Rd | wooxx |Rs - 3/5 R
Rd = [D}[Rs@] 0o | Rd o [D| @ |Rs - G6/7 [R]

Description: The group of instruction will be executed for subtraction without carry in arithmetical

operation, i.e. Rd = X - Y. X, Y will have different meanings according to the addressing mode. See

Table 4.1.
Example: R1-=0x28; /I R1=R1-1IM6
R2 = R1 - 0x2400; I/R2=R1-1M16
R3 -= [BP+0x08]; /I R3 = R3 — [BP+IM6]
R4 -= [0x30]; /I R4 = R4 — [A6]
BP = R4 - [0x2480]; /I BP = R4 — [A16]
[0x2480] = BP - R4; /l [A16] = BP — R4
SR -=R2; /I SR =SR -R2
PC -= D:[BP++]; /I Write to PC, cycles: 7
SBC Subtract with Carry
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd -= IM&, Carry
oo | Rd | xoxx MG - 2 IMG

Rd = Rd - IM8&, Carry

Rd =Rs - IM16, Carry | xox |Rd| Xwoocoo |Rs IM16 475 IM16

Rd -= [BP+IME], Carry

Rd = Rd - [BP+IME], 0o | Rd | xxx IME - 6 [BP+IME]
Carry .
URIE
Rd = [A8], Carry
oo | Rd | oo AB - 5/6 [AB]
Rd = Rd - [AG], Carry
Rd = Rs - [A18], Carry
x0o0 | Rd | xeoocox |W Rs A8 7/8 [A16]
[A16] = Rd — Rs, Carry
Rd = Rs, Carry xoo |Rd| xooox |Rs - ars R
Rd = {D:Rs@], Carry | xoox | Rd o (D| @ |Rs - 6/7 [R]

© Generalplus Technology Inc. PAGE 111 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed for subtraction with carry in arithmetical
operation, i.e. Rd =X -Y - C = X + (~Y) + C. X, Y will have different meanings according to the

addressing mode. See Table 4.1.

Example: R1 -= 0x20, Carry; IIR1=R1-1IM6-C
R2 = R1 - 0x2400, Carry; /IR2=R1-IM16-C
R3 -= [BP+0x08], Carry; /I R3 = R3 — [BP+IM6] - C
R4 -= [0x30], Carry; /I R4 = R4 —[A6] - C
BP = R4 - [0x2480], Carry; /I BP = R4 — [A16] - C
[0x2480] = BP - R4, Carry; //[A16]=BP —R4-C
SR -= R2, Carry; /ISR=SR-R2-C
PC -= D:[BP++], Carry; /I Write to PC, cycles: 7
NEG Negative
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd =-IM6& oo | Rd o MG - 2 MG
Rd =-1M16 woo | Rd | ooosx |Rs IM16 475 IM16
Rd = -[BP+IME] woox | Rd o) IMB - 6 [BP+IME]
Rd = -[Ag] wox | Rd o AB - 516 [AG] ,
Rd = -[A186] 1
xax | Rd | xxxxx |W|Rs AlS 7/8 [A16]
[A16] =-Rd
Rd=-Rs wox | Rd | ooosx |Rs - 315 R
Rd = -{D:}Rs@)] wod | Rd oDl @ |Rs - 617 [R]

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd = -X = ~X+1.

The meaning of X will be described as follow according to the different addressing modes. See Table 4.1

Example: R1 = -0x27; /I R1=-1M6

R3 = -[BP+0x08]; Il R3 = - [BP+IM6]

R4 = -[0x30]; /I R4 = - [AB]

BP = -[0x2480]; /I BP = - [A16]

[0x2480] = -BP; /I [A16] =- BP

SR =-R2; /I SR=-R2

PC = -D:[BP++]; /I Write to PC, cycles: 7

© Generalplus Technology Inc.

PAGE 112

V1.0 November 26, 2007

unSP Programmer’s Guide

CMP Compare
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ|S|C
CMP Rd, IM& woed | Rd oo IMB - 2 MG
CMP Rs, IM16 woot | Rd | wooxx [Rs IM16 415 IM16
CMF Rd, [BF+IMB] | s | Rd o) IMB - 6 [BF+IME]
CMP Rd, [AB] woo | Rd | o AB - 5/6 [AB] ,
AR
CMP Rs, [A18]
woo | Rd | oooor (W Rs Al6 7/8 [A16]
CMP Rd, Rs
CMP Rd, Rs wot | Rd | wooox |Rs - 3/5 R
CMP Rd, {[D:}[Rs@] | xox | Rd o (D] @ [Rs - 6/7 [R]

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X -
Y. But its result will not be stored and only affect NZSC flags. X, Y will have different meanings

according to the addressing mode. See Table 4.1.

Example: CMP R1, 0x27; /l Compare R1, IM6
CMP R3, [BP+0x08]; /I Compare R3, [BP+IM6]
CMP R4, [0x30]; // Compare R4, [A6]
CMP BP, [0x2480]; // Compare BP, [A16]
CMP SR, R2; /l Compare SR, R2
CMP PC, D:[BP++]; /I Compare with PC, cycles: 7
MUL Register Multiplication
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NfZ[S|C
MR =Rd*Rs ¥ | S S
Rd woxx [Rs - 12 R - -] -
{,ss/,usf uu} X |s d

© Generalplus Technology Inc. PAGE 113 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

Description: This operation is to multiply two registers and place the result at MR. It supports 3 kinds
of multiplication, signed*signed, signed*unsigned, and unsigned*unsigned. The signed-to-signed
multiplication is used as default. If the fraction mode is ON, the result of multiplication will be shifted
1-bit left. Only RO~ R6 is available for the destination register (Rd).

Note: MUL only support signed*signed, unsigned*signed, unsigned*unsigned types to increase the
encoding space of machine code. If user uses the signed*unsigned type in the program, the assembler
will exchange the Rd, Rs position in the output machine code. For example, the instruction “MR = R1 *

R2, su” will be assembled the same as “MR = R2 * R1, us”.

Example: MR =R2*R1; /I Two signed values
MR = R1 * R2, us; /I R1 is unsigned and R2 is signed
MR = R3 * R4, ss; /I Two signed values
MR = R3 * R4, uu; /I Two unsigned values
MULS Sum of Register Multiplication
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N[Z[S|C

MR =[Rd] * [Rs]
¥xx|3s|Rd | Sd [x|N|Rs - 10N+6 [R] - -1-1-
{ ss/ us/ uu}, N

Description: This operation is using a 36-bit arithmetic unit to sum up a consecutive register
multiplication and propagate coefficients for next FIR. It supports 3 kinds of multiplication,
signed*signed, unsigned*signed, and unsigned*unsigned. The signed-to-signed multiplication is used
as default. If the fraction mode is ON, the result of every multiplication will be shifted 1-bit left and then
sum up. The pointer register Rd and Rs will be adjusted automatically. If FIR MOVE mode is ON and
N>1, the contents of memory pointed by Rd are also moved forward. After the operation, the 4-bit MSB
of ALU (guard bits) will be placed at shift buffer (SB). The sign flag will be set if overflow occurred with
the final result.

Note: The result of multiplication will be incorrect if the following conditions are both met:

(N>1) and (either Rd or Rs are set to R3 or R4) and (Rd and Rs are set to the same register)

This operation of previous version unsP-1.0/unSP-1.1 doesn’t change the sign flag, but the unsP-1.2 will
change this flag to indicate overflow condition.

MULS only support signed*signed, unsigned*signed, unsigned*unsigned types to increase the
encoding space of machine code. If user uses the signed*unsigned type in the program, the assembler
will exchange the Rd, Rs position in the output machine code. For example, the instruction “MR = [R1] *

[R2], su, 4” will be assembled the same as “MR = [R2] * [R1], us, 4”.

© Generalplus Technology Inc. PAGE 114 V1.0 November 26, 2007

unSP Programmer’s Guide

The inner product levels, N=0-15 and N=0 denotes the 16-level inner product operation.

FIR MOVE MCDE is OFF

Before After
Rd Rd
MEM | X1 | X2 | X3 | X4 X1 | X2 X3 | X4
Rs Rs
MEM |C1|C2|C3|C4 C1|C2|C3|C4
MR = X1*C1 + X2*C2 + X3*C3 + X4*C4
FIR MOVE MODE is ON
Before After
Rd Rd
MEM | X1 | X2 | X3 | X4 X1 X1| X2 | X3 | X4
*The contents of memory are moved forward
Rs Rs
MEM |C1|C2|C3|C4 C1|C2|C3|C4

MR = X1*C1 + X2*C2 + X3*C3 + X4*C4

Example: MR =[R2] * [R1], 8;

Figure 4.1Inner Multiplication Operation chart

/I The inner multiplication of two signed

MR = [R1] * [R2], us, 2; /I R1 is unsigned, R2 is signed.
MR = [R2] * [BP], ss, 4; /I Two signed value.
MR = [R2] * [BP], uu, 4; /I Two unsigned value.
AND Logical AND
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z|S
Rd &= IME&)
0000 | Bd | MG - 2 IME W -
Rd = Rd & IM&

© Generalplus Technology Inc.

PAGE 115

V1.0 November 26, 2007

unSP Programmer’s Guide

Rd =Rs & IM16 ¥xxx | Rd | o000 |Rs IM16 4/5 IM16
Rd &= [BP+IME&]

w0 | Rd [IME - 6 [BP+IME]
Rd = Rd & [BP+IM&]
Rd &= [AB]

x0oo0 | Rd [X A - 5/6 [AB]
Rd = Rd & [Af]
Rd = Rs & [A16]

oo | Rd | xoox |W)Rs Ald 7/8 [A16]
[A16] =Rd & Rs
Rd &=Rs xxxx | Rd | xooou |(Rs - 3rs R
Rd &= {D}[Rs@] xoo | Rd |xxx[D| @ |Rs - 6/7 [R]

Description: The group of instruction will be executed in logical AND operation, i.e. Rd =X & Y. The X

and Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 &= 0x2F; /R1=R1 & IM6
R3 &= [BP+0x08]; /I R3 = R3 & [BP+IM6]
R4 &= [0x30]; /I R4 = R4 & [AB]
BP = R2 & [0x2480]; // BP = R2 & [A16]
[0x2480] = R2 & BP; /I [A16] = R2 & BP
SR &= R2; /I SR =S8R & R2
PC &= D:[BP++]; /I Write to PC, cycles: 7
OR Logical Inclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Werd Group 1 Word Group 2 Mode N(Z|S|C
Rd |= IM&
oo | Rd 2 IMBE - 2 MG
Rd =Rd | IM&
Rd=Rs|IM16 xox | Rd | oxooox [Rs IM16 475 IM16
Rd |= [BP+IM#G]
woo | Rd x| IMB - 6 [BP+IMG]
Rd = Rd | [BF+IME]
Rd |= [A6] V] -
o | Rd [xxx AB - 5/6 [AG]
Rd = Rd | [AB]
Rd = Rs | [A18]
wo | Rd | ooooe |WIRs AlB 7/8 [A16]
[A16] = Rd | Rs
Rd|=Rs wox | Rd | xooxx [Rs - 3/5 R
Rd |= {D}Rs@] woox | Rd o (D) @ |Rs - 6/7 [R]

© Generalplus Technology Inc. PAGE 116 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 4.1.

Example: R1 |= Ox2F; /I R1=R1]|IM6
R3 |= [BP+0x08]; /I R3 = R3 | [BP+IM6]
R4 |= [0x30]; /I R4 = R4 | [A6]
BP = R2 | [0x2480]; /I BP = R2 | [A16]
[0x2480] = R2 | BP; /1 [0x2480] = R2 | BP
SR |= R2; /ISR=8R|R2
PC |= D:[BP++]; /I Write to PC, cycles: 7
XOR Logical Exclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z(s|C
Rd "= IM8&
oo | Rd | o IME& - 2 MG
Rd = Rd * IM&
Rd = Rs *IM16 waook | Rd | oo |Rs 16 4/5 IM16
Rd "= [BP+IMB]
oo | Rd {0 IMB& - 6 [BP+IME]
Rd = Rd * [BP+IM#]
Rd "= [AB] V|- |-
x| Rd | o A - 5/6 [AG]
Rd = Rd * [AB]
Rd = Rs * [A16]
x| Rd | oo |W(|Rs Al 718 [A16]
[A16]=Rd " Rs
Rd "= Rs wox | Rd | woosx |Rs - 3/56 R
Rd "= [D}[Rs@)] oo | Rd o (D) @ [Rs - G/7 [R]

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X #

Y. The X, Y will have different meanings according to the addressing mode. See Table 4.1.

Example:

R1 "= 0x2F;
R3 *= [BP+0x08];
R4 "= [0x30];
BP = R2 * [0x2480];
[0x2480] = R2 * BP;
SR = R2;

PC A= D:[BP++];

/IR1=R1"IM6
/I R3 = R3 * [BP+IM6]
/I R4 = R4 1 [A6]

// BP = R2 A [A16]

/1 [0x2480] = R2 A BP
/I SR = SR A R2

/I Write to PC, cycles: 7

© Generalplus Technology Inc.

PAGE 117

V1.0 November 26, 2007

unSP Programmer’s Guide

TEST Logical Test
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ[S|C
TEST Rd, IM& xoox | Rd o] IMB - 2 MG
TEST Rs, IM16 wo | Rd | woosx |Rs IM16 415 IM16
TEST Rd, [BP+IME] | o | Rd x| IMB - B [BP+IME]
TEST Rd, [Af] oo | Rd o AB - /6 [AG] ,
vV - -
TEST Rs, [A18]
oo | Rd | xoox |W|Rs AlG 7/8 [A16]
TEST Rd, Rs
TEST Rd, Rs woo | Rd | xooox |Rs - 315 R
TEST Rd, {D:}[Rs@] | xox | Rd [xxx|D| @ |Rs - 6/7 [R]

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However, its
result will not be stored and it only affects NZ flags. The X and Y will have different meanings according

to the addressing mode. See Table 4.1.

Example: TEST R1, 0x27; /l TEST R1 and IM6
TEST R3, [BP+0x08]; /I TEST R3 and [BP+IM6]
TEST R4, [0x30]; // TEST R4 and [A6]
TEST BP, [0x2480]; // TEST BP and [A16]
TEST SR, R2; /I TEST SR and R2
TEST PC, D:[BP++]; /I TEST PC and D:[BP++], cycles: 7
ASR-ALU Register Arithmetic-Shift-Right and Arithmetic/Logical Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N[Z|S|C
Rd += Rs ASR nn
{.Carry}
Rd -= Rs ASR nn xxxx | Rd | x|xx¢¢|nn [Rs - 3/5 R A RAR
{.Carry}

CMP Rd, Rs ASR nn

© Generalplus Technology Inc. PAGE 118 V1.0 November 26, 2007

unSP Programmer’s Guide

Rd =-Rs ASR nn
Rd &= Rs ASR nn
Rd |- Rs ASR nn

Rd *= Rs ASR nn
TEST Rd, Rs ASR nn
Rd=Rs ASRE nn

ook | Rd | % [»0¢| nn |Rs - 3/5 R S A -] -

Description: The group of instruction will be executed in arithmetic operation with logical shift right

where nn is number of shifting bits and ranged in [1~4].

Before shifting op:
Rs B15B14B'I3|B'I2E§'I'IB1D BY|B8|B7|B6|B5|B4(B3|B2|B1|BO SB|S3|52|51(s0

SB is the shift buffer. Suppose nn=3, after shift op of
ASR: (Arithmetic Shift Right with MSB, which fits for signed)

Rd |[E2ENEOB14B14B13B12E11B10B9 |B8 |BY |BG |B5 | B4 | B3 SB (B2 B B0 53

E2, E1, EO are sign extension bit of the most significant bit in Rs.

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ASR 2; /I SR =SR | (R2/2°%)
SP += R1 ASR 4, Carry; IISP=SP+(R1/2%+C
R2 =R1 ASR 2; IIR2=R1/2
LSL-ALU Register Logical-Shift-Left and Arithmetic/Logical Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C

Rd +=Rs LSLnn
{,Carry}
Rd-=Rs LSLnn xxxx | Rd | x| xxx |nn|Rs - 3/5 R R

{,Carry}
CMP Rd, Rs LSL nn

Rd=-Rs LSLnn
Rd &= Rs LSL nn
Rd |=RsLSLnn .
oo | Rd [x| xxx |nn|Rs - 35 R V-
Rd *~=Rs LSL nn

TEST Rd, Rs LSL nn

Rd = Rs LSL nn

© Generalplus Technology Inc. PAGE 119 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed in arithmetic and logical operations with logical
shift left where nn is number of shifting bits and ranged in [1~4].

Before shifting op:

T

Rs Ei1uE14|EI13EI12EI1‘I

B10

BY|BE(BT|B&(B5|B4|B3(B2|B1 |BO SB|33|82|31(30

SB is the shift buffer. Suppose nn=3, after shift op of

LSL: (Logic Shift Left)

SB|S0 1A 14E13

Rd

B12B811|B10|B9|B3|B7 |B6|(B5 |B4 (B3 (B2|B1|BORG- 0O

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |=R2LSL 2;

/I SR =SR | (R2 << 2)

SP += R1 LSL 4, Carry; //SP=SP+(R1<<4)+C
R2 =R1LSL 2; IIR2=R1<<2
LSR-ALU Register Logical-Shift-Right and Arithmetic/Logical Operation
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N Z| S|C
Rd +=Rs LSR nn
{.Carry}
Rd -=Rs LSR nn wooe | Rd | x| xoc|nn| Rs 3/5 R | g
{.Carry}
CMP Rd, Rs LSR nn
Rd =-Rs LSR nn
Rd &= Rs LSR nn
Rd |- Rs LSR nn
woo | Rd | x |xooc|nn|Rs a5 R v - |-
Rd *=Rs LSR nn
TEST Rd, Rs LSR nn
Rd =RsLSRnn

Description: The group of instruction will be executed with logical shift right where nn is number of shifting

bits and ranged in [1~4].

Before shifting op:

Fs [B15B14/B13B12[B11

B10

B9 |B3 |BY | B

B5|B4|B3|B2|B1|BO SB|S3 525150

[sp]

SB is the shift buffer. Suppose nn=3, then after shift op of

LSR: (Logic Shift Right)

Rd &

Ha0elB15

E14

B13

B12B11|B10(B2 | B2 |BT |BG [B5 |B4 | B3 SB82 {81 {B0| 53

Note: Carry flag only couples with ALU operation, not shift operation.

© Generalplus Technology Inc.

PAGE 120 V1.0 November 26, 2007

unSP Programmer’s Guide

Example: SR |=R2LSR 2; /I SR = SR | (R2 >> 2)
SP += R1LSR 4, Carry; /ISP =SP+(R1>>4)+C
R2 =R1LSR 2; /IR2=R1>>2
ROL-ALU Register Rotate-Left and Arithmetic/Logical Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ| S|
Rd+=Rs ROL nn
{.Carry} XXX I
Rd | x [xxx |nn|Rs - 3/5 R SRR
Rd-=Rs ROL nn {,Carry}| x
CMP Rd, Rs ROL nn
Rd =-Rs ROL nn
Rd &= Rs ROL nn
Rd |- Rs ROL nn WK 1,
Rd | x [xxx |nn|Rs - 2/5 R W] - |-
Rd “=Rs ROL nn X
TEST Rd, Rs ROL nn
Fd = Rs ROL nn

Description: The group of instruction will be executed in arithmetic and logical operations with rotate
shift left where nn is number of position shift and ranged in [1~4].

Before shifting op:

Rs [B1

[&]

B14513B12B11|B10| B9 (B8 (BT |B6 |BS | B4 |B3|B2|B1 |BO SB|33|52|31|50

SB is the shift buffer. Suppose nn=3, after shift op of:

ROL: (Rotate Left with SB) SB

sB|s0 [BiEE1alEiY Rd|p12/B11|e10|Bo |82 |B7 |B6 |B5 |B4 |B3| B2 |B1|B0 |82]82 51

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |=R2 ROL 2; /I SR = SR | (R2 ROL 2)
SP += R1 ROL 4, Carry; /ISP =SP+(R1ROL4)+C
R2 =R1ROL 2; //R2=R1ROL 2
ROR-ALU Register Rotate-Right and Arithmetic/Logical Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|C

© Generalplus Technology Inc. PAGE 121 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C

Rd += Rs ROR nn
{,Carry}

Rd -=Rs ROR nn wox | Rd [x| nn|Rs - 375 R NRIRR!
{,Carry}

CMP Rd, Rs ROR nn
Rd = - Rs ROR nn

Rd &= Rs ROR nn
Rd [=Rs ROR nn 1.
woox | Rd [x| oo (nn|Rs - 375 R Y] -1-
Rd *= Rs ROR nn

TEST Rd, Rs ROR nn

Rd=Rs ROR nn

Description: The group of instruction will be executed in arithmetic and logical operations with rotate
shift right where nn is number of shifting bits and ranged in [1~4].

Before shifting op:

Fs B15B14B13B12(B11|B10| BO (BA [BY |B

[&F]

B5|B4 |B3|B2|B1|BO SB|83(32(51)|80

SB is the shift buffer. Suppose nn=3, after shift op of

ROR: (Rotate Right with SB)

Rd [8251{80B15B14B13812B11p10|20 | B2 |B7|B6 | BS B4 B3| SB|BZ[BY BE|S3

Note: Carry flag only couples with ALU operation, not shift operation.

Example: SR |= R2 ROR 2; /' SR = SR | (R2 ROR 2)
SP += R1 ROR 4, Carry; //SP=SP+(R1ROR4)+C
R2 =R1ROR 2; /R2=R1ROR 2
ASR/ASROR/LSL/LSLOR/LSR/LSROR/ROL/ROR Shift Operation
Instruction Format Addressing Flags

Syntax Cycles

Word Group 1 Word Group 2 Mode NfZ[S|C
Rd=Rd SFT_COPRs | xxxx | Rd || x| x|Rs - 8 R -1 --

© Generalplus Technology Inc. PAGE 122 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

Description: This is a 16-bit multi-cycle shift operation, but it can support 32-bit shift operation by
combining 2 shift operations. The result of 32-bit shift operation is placed at MR, the shifted bits and
R4/R3 will be applied an OR operation automatically. Shift operations can support ASR/ASROR/LSL/
LSLOR/LSR/LSROR/ROL/ROR commands. The ROR/ROL operation will shift with carry flag, and the

drop bit will place at carry flag after operation. Only RO~R6 is available for the destination register (Rd).

SFT_OP Syntax
ASR Rd = Rd ASR Rs;
ASROR MR |= Rd ASR Rs;
LSL Rd = Rd LSL Rs;
LSLOR MR |= Rd LSL Rs;
LSR Rd = Rd LSR Rs;
LSROR MR |= Rd LSR Rs;
ROL Rd = Rd ROL Rs;
ROR Rd = Rd ROR Rs;

Note: Rs[4:0] valid: ASR/ASROR/LSL/LSLOR/LSR/LSROR; Rs[3:0] valid: ROL/ROR.

Example: R2 = R2 ASR R1; /I 16-bit arithmetic right shift
R3 =R3 LSR R1; [/ 32-bit arithmetic right shift
MR |= R4 ASR Rf1;
R4 = R4 LSL R1; I/ 32-bit logical left
shift MR |= R3 LSL Rf1;

TSTB/SETB/CLRBI/INVB Bit Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
BIT OP Rd. Rs wooo | Rd | oo |xx|x| Rs - 4 R - -
BIT_OP Rd, offset o | Rd | ook |xx| offset - 4 R - -
BIT_OP {D}Rd], Rs [xxx | Rd |xx|D|xx|x| Rs - 7 Rl - -
BIT_OF {D:}Rd], |
00 | Rd || D x| offset - 7 R -V - -
offset

© Generalplus Technology Inc. PAGE 123 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

Description: Executing bit operation at register value, the original value of accessing bit will affect the

zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be 0.

Executing bit operation with the value at memory location indexed by register. Users can use the “D:”

indicator to access memory space large than 64K words, If “D:” indicator is used, the MSB 6-bit of

accessing address will use data segment (DS) value else will be zeroed. The original value of

accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be

0.

Notes: Only the least significant 4 bits of source register (Rs[3:0]) are used and only RO~ R6 is

available for the destination register (Rd).

BIT_OP |Address Syntax Meaning
Mode
TSTB Rd, Rs; Z= (Rd[Rs[3:0]]== 1)? 1'b0: 1'b1
1B R TSTB Rd, offset; 7= (Rd[offset]== 1)? 1'b0: 1'b1
TSTB {D:}{Rd], Rs; 7= (MEM[{DS,Rd}][Rs[3:0]]== 1)? 1'b0: 1'b1
. TSTB {D:}{Rd], offset; 7= (MEM[{DS,Rd}][offset]== 1)? 1'b0: 1'b1
SETB Rd, Rs; Rd[Rs[3:0]]= 1
SETB R SETB Rd, offset; Rd[offset]= 1
SETB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= 1
a SETB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= 1
CLRB Rd, Rs; Rd[Rs[3:0]]= 0
CLRB R CLRB Rd, offset; Rd[offset]= 0
CLRB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= 0
R CLRB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= 0
INVB Rd, Rs; Rd[Rs[3:0]]= ~Rd[Rs[3:0]]
R INVB Rd, offset; Rd[offset]= ~Rd[offset]
Ve INVB {D:}[Rd], Rs; MEM[{DS,Rd}][Rs[3:0]]= ~ MEM[{DS,Rd}]|[Rs[3:0]]
a INVB {D:}[Rd], offset; MEM[{DS,Rd}][offset]= ~ MEM[{DS,Rd}][offset]
Example: INVB R4, R2; /1 If R2[3:0]=0x3, R4[3]=~R4[3]
CLRB R3, 10; /I R3[10]=0
SETB [R1], R3; I/ If R3[3:0]=0x3, MEM[R1][3]=1
SETB D:[R1], 13; I/l MEM[{DS,R1}][13]=1
DIVQ Divide-Quotient Operation
Syntax Instruction Format Cycles | Addressing | Flags
© Generalplus Technology Inc. PAGE 124 V1.0 November 26, 2007

unSP Programmer’s Guide

Word Group 1 Word Group 2

Mode

DIVQ MR, R2

RO OCNIK -

R

Description: DIVQ uses the non-restoring division algorithm to yield a 1-bit quotient at each

instruction. To implements a division with a 32-bit unsigned dividend and 16-bit unsigned divisor, the

32-bit dividend must be placed at MR, 16-bit divisor must be placed at R2, and the AQ flag must be

cleared before executing. Finally, the quotient will be placed at R3.

Note: AQ=FR[14], AQ flag determines the ADD or SUB operation in the non-restoring division

algorithm
Example: /I 32-bit unsigned dividend / 16-bit unsigned divisor
// 0x0003_1713 / 0x0625
R4 = 0x0003;
R3 = 0x1713; /I Load
data R2 = 0x0625;
R1=FR;
CLRB R1, 14; /I Clear AQ
flag FR = R1;
R1=1,
R4 = R4 LSL R1; /1 Shift 1-bit
left MR |= R3 LSL R1;
R1=0;
div_unsigned: /I Implement an unsigned division with 16
iterations DIVQ MR, R2;
R1 +=1;
CMP R1, 16;
JNE div_unsigned;
DIVS Divide-Quotient Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|C

© Generalplus Technology Inc.

PAGE 125

V1.0 November 26, 2007

o

Generalplus

unSP Programmer’s Guide

DIvVs MR, R2

OO OO

Description: DIVS uses the non-restoring division algorithm to compute the sign of the quotient. To

implements a division with a 32-bit signed dividend and 16-bit signed divisor, the 32-bit dividend must

be placed at MR, 16-bit divisor must be placed at R2, and the AQ flag must be cleared. The DIVS

instruction is executed at the beginning of the division. Then DIVQ instruction is executed repeatedly.

Finally, the quotient will be placed at R3.

Output Formats

The format of a division result is based on the format of the input operands. The division logic has

been designed to work most efficiently with fully fractional numbers. If the dividend is in M.N format (M

bits before the binary point, N bits after), and the divisor is O.P format, the quotient’'s format will be

(M-0+1).(N-P-1).

Integer Division

To generate an integer quotient, you must shift the dividend to the left one bit, placing it in 31.1 format.

The output format for this division will be (31-16+1).(1-0-1), or 16.0. You must ensure that no

significant bits are lost during the left shift, or an invalid result will be generated.

ERROR Conditions

There are two cases where an invalid or inaccurate result can be generated

B Negative Divisor Error

If you attempt to use a negative number as the divisor in signed division, the quotient generated

may be one LSB less than the correct result unless the result should equal 0x8000. there are two

ways to correct for this error

® Avoid division by negative numbers. If your divisor is negative, take its absolute value and

invert the sign of the quotient after division.

® Check the result by multiplying the quotient by the divisor. Compare this value with the

dividend, and if they are off by more than the value of the divisor, increase the quotient

by one.

B Unsigned Division Error

Unsigned divisions can produce erroneous results if the divisor is greater than Ox7FFF. If it is

necessary to perform a such division, both operands should be shifted right one bit. This will

maintain the correct orientation of operands.

Shifting both operands may result in a one LSB error in the quotient. This can be solved by

multiplying the quotient by the original (not shifted) divisor. Subtract this value from the original

dividend to calculate the error. If the error is greater than the divisor, add one to the quotient, if it is

negative, subtract one from the quotient.

Example: /I 2-bit signed dividend / 16-bit signed divisor

/I OXFFFF_1713 / 0x0625

© Generalplus Technology Inc.

PAGE 126

V1.0 November 26, 2007

unSP Programmer’s Guide

R4 = OXFFFF;

R3 = 0x1713; /I Load

data R2 = 0x0625;

R1=FR;
CLRB R1, 14;
flag FR = R1;

/I Clear AQ

R4 = R4 LSL R1;
left MR |= R3 LSL Rf1;

/1 Shift 1-bit

R1=0;

DIVS MR, R2; /I Get the sign of the quotient
div_signed:

DIVQ MR, R2;

R1+=1;

CMP R1, 15;

JNE div_signed;

/I Implement an unsigned division with 15 iterations

EXP Derive Exponent Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ[S|C
R2=EXP R4 OO - 2 R -1 -1-1-
© Generalplus Technology Inc. PAGE 127 V1.0 November 26, 2007

unSP Programmer’s Guide

Description:
The EXP instruction derives the effective exponent of the R4 register to prepare for the normalization

operation, and places the result in the R2. The result is equal to the number of the redundant sign bit

in the R4.

R4 R2
FIE|D|C|B|A|9 | 8|7 |6|5(4[3|2|1]|0
s|N|D|D|D|D|D|D|D|D|D|(D|D|D|D|D 0
s|s|N|D|D|D|D|D|D|D|D|(D|D|D|D|D 1
Ss(s|s|N|D|D|D|D|D|D|D|D|D|D|D}|D 2
s|s|s|s|N|D|D|D|D|D|D|fD|D|D|D|D 3
Ss|s|s|S|s|{N|D|D|D|D|D|D|D|D|D|D 4
Ss|s|s|s|s|sS| N|D|D|D|D|fD|D|D|D|D 5
S(S|sS|S|s|S| S N|D|D|D|D|D|D|D|D B
S|(sS|s|sS|s|S| S| s|N|D|D|D|D|D|D|D 7
S(S|S|S|S|S| S| S|s|N|(D|D|D|D|D|D 8
S|S|S|S|S|S|S|S|S|S|N|(D|D|D|D|D 9
S|S|S|sS|S|(S|s|S|S|(s|s|N|D|D|D|D 10
S|S|S|S|S|S|S s|sS|S|sS|(s|N|D|D|D 11
S|S|S|S|S|S|S | S|S|S|S|(s|s|N|D|D 12
S|S|S|S|S|S|S|S|S|S|S|(S|s|s|N|D 13
S|S|S|S|S|S|S | S|S|S|S(s|s|S|S|N 14
S|S|S|S|S|S|S| S|S|S|S(5|s|s|s|s 15

*(S)ign bit, (N)on-sign bit, (D)on't care bit
Example: R2 = EXP R4; /I'lf R4 =16'b1111_0111_0111_0000, then R2 = 3
/I If R4 = 16’b0000_0000_0100_1111,then R2=8
4.1.3 Data Segment Access Instruction
Assign Data Segment (DS) value with 6-bit immediate
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N(Z|S|C
DS =IM8 XXHOCXHHHK M6 - 2 IME -1-1-1-

Description: DS=0x12;

© Generalplus Technology Inc. PAGE 128 V1.0 November 26, 2007

unSP Programmer’s Guide

Example:

DS=0x12;

Access Data Segment (DS) value with register

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N c
Rs=D5 (W=0)
xopooooonoox | W | Rs - 2 R -1
DS =Rs (W=1)
Description: Access Data Segment (DS) with register. Only 6-bit value of the source register (Rs[5:0])
will be set on DS. The zero-extended is used when getting DS segment.
Example: DS =R1;
R2 =DS;
Flag Register Access
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N
Rs=FR (W=0)
xo00ooeonoex | W | Rs - 2 R
FR=Rs (W=1)

Description: Access the Flag Register (FR) value.

Example:

FR=R1;

R2 =FR;

4.1.4 Transfer-Control Instructions

BREAK Software Interrupt Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S§|C
BREAK HHOOCCO00O000000K - 10 [A16] -1-1-1-

© Generalplus Technology Inc.

PAGE 129

V1.0 November 26, 2007

© Generalplus Technology Inc.

unSP Programmer’s Guide

Description: This is a software interrupt instruction (SWI). CPU will interrupt current program

executing sequence, save the PC, SR to memory location indexed by SP and jump to the BREAK

service routine which address stored in memory location [0xXO0OFFF5].

Example: BREAK; /I Generate a software interrupt

CALL Segmented Far Call
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|(C
CALLAZ22 000000000 | A22[21:16] A22[15:0] 9 [A22] -1-1-
CALL MR HOOCOOCOOOODO0K - 8 R -1-1-1-

Description: For addressing mode [A22], this is a far function call instruction with 22-bit immediate address.
Both PC and SR will be pushed to memory indexed by SP and SP, CS will be updated automatically after
this operation.
For addressing mode R, this is a far function call instruction with 22-bit indirect address in MR. The
22-bit content of MR {R4[5:0], R3} will be used as destination address. PC and SR will be pushed to

memory location indexed by SP and SP, CS will be updated automatically after this operation.

Example: CALL 0x12345;

CALL MR; /I Push PC and SR, then jump to {R4[5:0],R3}
RETF Return from Subroutine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
RETF HOCOOOODONOO0000 - 8 [A22] -{-1-

Description: Return from subroutine instruction. The SR and PC will be popped from memory location

indexed by SP, and return to the calling function.

Example: sub1: .PROC

/I Return from sub1

PAGE 130 V1.0 November 26, 2007

[|

C“lt'.‘l]‘:::'lllt)[lli'} UnSP Programmel”s GU|de
RETI Return from Interrupt Service Routine
Instruction Format Addressing Flags
Syntax Cycles

Word Group 1 |Word Group 2 Mode N|Z|S|C

B (IRQ_NEST OFF)/
RETI HCOO00COOOOORN - [A22] -1 -1 -]-

10 {IRQ_NEST ON)

Description: Return from interrupt service routine, if the IRQ Nest Mode (INE) is ON and CPU is executing
IRQ service routine, the FR, SR, PC will be popped from memory location indexed by SP and return to the
interrupted program. Else only the SR, PC will be popped and return to the interrupted program. After this
instruction the BREAK, FIQ, IRQ servicing flag inside CPU will be cleared according to priorities.

Example: .TEXT
.PUBLIC _IRQ1
_IRQ1:
RETI; /I Return from IRQ1
JUMP Branch Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode |N|Z|S|C
2 (not-taken)
BRANCH OF IM6 | BRANCH OP |xoox|D|IMG - IMB -1-1-1-
/ 4 (taken)

Description: A conditional short jump instruction to local label (address within® Note:

D=0 denotes the forward jump, else D=1 denotes the backward jump.

BRANCH_OP Condition Description
JCC ==0 carry clear
JB C==0 below (unsigned)
JNAE C==0 not above and equal (unsigned)
JCS C== carry set
JNB C== not below (unsigned)
JAE C== above and equal (unsigned)
JSC S==0 sign clear

© Generalplus Technology Inc. PAGE 131 V1.0 November 26, 2007

-
Az

Generalplus unSP_Programmer’s Guide
BRANCH_OP Condition Description
JGE S==0 great and equal (signed)
JNL S==0 not less (signed)
JSS S== sign set
JNGE S== not great than (signed)
JL S== Less (signed)
JNE Z==0 not equal
JNZ Z==0 not zero
JZ Z== Zero
JE Z== Equal
JPL N==0 Plus
JMI N== Minus
JBE Not (Z==0 and C==1) below and equal (unsigned)
JNA Not (Z==0 and C==1) not above (unsigned)
JNBE Z==0 and C== not below and equal (unsigned)
JA Z==0 and C== above (unsigned)
JLE Not (Z==0 and S==0) less and equal (signed)
IJNG Not (Z==0 and S==0) not great (signed)
JNLE Z==0 and S==0 not less and equal (signed)
JG Z==0 and S==0 great (signed)
JvC N == not overflow (signed)
JVS N!=8 overflow (signed)
JMP Always unconditional branch
Example: Loop:
JCC Loop; /I Jump to Loop, if Carry flag = 0
GOTO Unconditional Far Jump
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
GOTO A22 HO00ooooo | A22[21:16] AZ22[15:0] 5 [A22] -1-1-1-
GOTO MR HOO0OOCCO0OO00K - 4 R --1-]-
© Generalplus Technology Inc. PAGE 132 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: For addressing mode [A22], this is a far jump instruction with 22-bit immediate address.

The 22-bit target address is range from 0x000000 to Ox3fffff. After this operation, the Code Segment

(CS) will be updated automatically. For addressing mode R, this is a far jump instruction with MR

register. The 22-bit content of MR {R4[5:0],R3} will be used as destination address.

Example:

[example1]

0x008010

0x035678

[example2]

GOTO MR;

GOTO far_func;

far_func:

4.1.5 Miscellaneous Instructions

Flag Register:

// Jump to {R4[5:0],R3}

F E

D

- AQ

BNK

FRA | FIR

SB

FIQ | IRQ

INE

PRI

FIR_MOV ON/OFF

Enable/Disable Automatic Data Movement for FIR Operation

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZS
FIR_MOV ON
wooooocoocooox | FIR - - -1--
FIR_MOV OFF

Description: Switch FIR MOVE mode on/off. If the FIR Move mode is on, the value stored in

multiplication parameter array indexed by Rd will be moved forward while executing MULS instruction.

The FIR=0 denotes the FIR MOVE mode ON, else it denotes OFF. The default value of FIR is 0 (ON)

Example: FIR_MOV ON;

FlG ON/OFF Enable/Disable FIQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|lZ|S|C
FIQ ON
000000000000 | FIQ | x - 2 - - -] -
FIQ OFF
© Generalplus Technology Inc. PAGE 133 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: Enable/disable FIQ interrupt. The FIQ=1 denotes the FIQ enable, else it denotes disable.
The default value of FIQ is 0 (disable).

Example: FIQ ON; /I Enable FIQ
IRQ ON/OFF Enable/Disable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
IRC ON
wooocooeoocox | IRQ - 2 - -1-1-
IRQ OFF

Description: Enable/disable IRQ interrupt. The IRQ=1 denotes IRQ enable, else it denotes IRQ disable.
The default value of IRQ is 0 (disable).

Example: IRQ ON; /I Enable IRQ
INT Interrupt Set
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
INT FIQ
INT IRQ
woooocoooocee: |FIQIRG - 2 - -
INT FIQ), IRQ
INT QFF

escription: Set FIQ/IRQ flags.

Example: INT FIQ,IRQ; / Enable FIQ, IRQ (OP[1:0]= 2’b11)
INT FIQ; / Enable FIQ, disable IRQ (OP[1:0]= 2'b10)
INT OFF; /I Disable FI1Q, IRQ (OP[1:0]= 2'b00)

© Generalplus Technology Inc. PAGE 134 V1.0 November 26, 2007

unSP Programmer’s Guide

IRQNEST IRQ Nest Mode
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|IZ|S|C
IRQNEST ON
xoooocooeooo | INE | x - 2 - -1 -1-1-
IRQNEST OFF

Description: Switch IRQ NEST mode on/off. If IRQ NEST mode is on, IRQ interrupt which priority greater
than the PRI register can be accepted while CPU executing IRQ service routine, in such case CPU will
push FR/SR/PC into stack and change the PRI register with IRQS value before entering IRQ service
routine, and restore PC/SR/FR from stack while leaving IRQ service routine. The INE=1 denotes the IRQ

NEST mode ON, else it denotes OFF. The default value of INE is 0 (OFF).

Example: IRQNEST ON;

SECBANK Switch Register Bank
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|IS|C
SECBANK ON
X0OOCO00000X. | BNK - 2 - B I
SECBANK OFF

Description: Switch secondary register bank mode ON/OFF, 4 shadow registers SR1-SR4 are added
in 'nsP -1.2 and above. User can use this instruction to switch secondary register bank mode on/off. When
shadow register mode is on, all operation with R1-R4 will map to SR1-SR4. Secondary Bank Registers are
suggested to be used in interrupt service routine only to reduce the effort of saving registers in service
routine. The BNK=1 denotes secondary register bank is used, else the primary register bank is used. The

default value of BNK is 0 (OFF).

Example: SECBANK ON;

FRACTION Fraction Mode
Instruction Format Addressing Flags
Syntax Cycles
Weord Group 1 Word Group 2 Mode N|Z[S|C

© Generalplus Technology Inc. PAGE 135 V1.0 November 26, 2007

Generalplus

unSP Programmer’s Guide

FRACTION ON
FRACTION OFF

SOOI,

FRA

Description: Switch to fraction mode. If fraction mode is on, the result of multiplication will be shift 1 bit

left to present the correct result of fraction number multiplication. The FRA=1'b1 denotes the fraction

mode ON, else it denotes OFF. The default value of FRA is 1'b0 (OFF).

Example: FRACTION ON;
NOP NO Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
NOP HOOOCOOOOOO0O00 - 2 -1-1-1-

Description: No operation, only increase PC to the next address.

Example: Delay_Loop:

NOP;

CMP R1, OXFFFF;
JA Exit_Loop;

RT+=1;

/I Waiting

/l Waiting for delay

counting JMP Delay_Loop;

Exit_Loop:

4.1.6 Instruction Set Summary

/l End waiting

I/ Search for end waiting flags

Syntax FIE|DIC B A 8| 7/6|5(4, 3|2 1|0
SECBANK ON/OFF 1T/171)/1]-]- 1] 01|00 1]0]|1|BNK
FRACTION ON/OFF 1111 -]- 1, 0/1]0[{0] 0 |1]1|FRA
FIR_MOV ON/OFF 11111 -]- 1, 0/1]0]0]0|1]0]|FIR

FIQ ON/OFF 1T/1]1)/1]-]- 1, 0/1]0[0] 1 [1]|FI| O
IRQ ON/OFF 1T/1]1)/1]-]- 1, 0/1]0[0|1|0]0|IRQ
INT FIQ/IRQ/OFF 1171 01]-- 1, 0/1]0|0| 0 |0|FIIRQ
IRQNEST ON/OFF 11111 -]- 1, 0/1]0[0] 1T [1]IN| 1
Rd {ALU_OP} = IM6 ALU_OP Rd 0| 0|1 IM6
Rd = Rs {ALU_OP} IM16 ALU_OP Rd 1, 0/0]0|0] 1 Rs
IM16
Rd {ALU_OP} =Rs ALU_OP Rd 1| SFT_OP Rs
Rd {ALU_OP} = [A6] ALU_OP Rd 1 1 ‘ 1 ‘ A6
© Generalplus Technology Inc. PAGE 136 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide
Syntax Fl [| B | |8] 7 al3]2]1] o0
Rd = Rs {ALU_OP} [A16] ALU_OP Rd 1] 0 W Rs
A16
Rd {ALU_OP} = {D:}[Rs@] ALU_OP RA (0| 11/ D @ Rs
Rd {ALU_OP} = [BP+IM6] ALU_OP Rd 0| 00 IM6
BIT_OP Rd, Rs 1/1/1/0/ R 0| 00/BTO| 0| Rs
BIT_OP Rd, offset 17111110 Rd 0 0 1 |BIT_O offset
BIT_OP {D:}Rd], Rs 1/1/1/0/ Rd |1 0D|BTO| 0| Rs
BIT OP {D}Rd],offset | 11|10 Rd | 1| 1D BITO offset
Rd = Rd LSFT_OP Rs 191/1/0] Rd 1| OLSFT.OP| 1 Rs
MR =Rd*Rs, {sslusiui} | 1|1|1|/S| Rd |S| 00|0 0| 1 Rs
MR =[Rd] * [Rs], {ss/us/fuu}, N | 1 | 1 | 1 | S Rd S 1 N Rs
DIVQ MR, R2 AR R EE R R A
DIVS MR, R2 10111 - - -1 d11]-]-10l1]o0
R2 = EXP R4 10111 - - -1 d11]-]-11]0]0
NOP AREREEN I R R R
BRANCH_OP IM6 BRANCH OP | 1|1|1 0 0D IM6
GOTO MR 1l lalafalalol Ao -]-] -
COTO A22 1010101010110 10 A22[21:16]
ATk
DS = IM6 101010101/ 1/1/0] 00 IM6
DS = Rs / Rs= DS 101101 -/-l0o] ool1]olw Rs
FR=Rs/Rs = FR 101101 -1 - -l0ol dol1]/1|w Rs
PUSH Ry, R. to [Rs] 191/0/1] Rd 0| 10 N Rs
POP Ry, R from [Rs] 170/0/1] R4 0| 10 N Rs
CALL MR 1111111 01l1]-]-]olo] 1
CALL A2 101101 -1 - -0 01 A22[21:16]
AT
RETF 170/o0/1/1/0/1/0] 10 110 0
RETI 170/o/1/1/0/1/0] 10 11 0
BREAK 10111 - - -1 a1 - -]olol o

© Generalplus Technology Inc. PAGE 137 V1.0 November 26, 2007

unSP

Programmer’s Guide

5 unSP-1.3 Instruction Set

5.1 unSP-1.3 Instruction Set

unSP 1.3 instruction set has a group of instructions the same as unSP 1.2 instruction set. Only the new

instructions will be introduced below.

5.1.1 Byte Register Indirect

LOAD Load Register with Byte Memory
Instruction Format Flags
Addressing
Syntax Word [Cycles
Word Group 1 Mode N ZlS|C
Group 2
Rd = BJ[R@] xox |Rd|wox |[@ | x | Rs - 10/11* BR]
VW] -
Rd = W [R@] o [Rd | xoox | @ | x | Rs - 10/11* WR]

Rs=R1/R2/R3/R4

Rd=SP/R1/R2/R3/R4/BP/SR/PC

For load operation, the high byte of Rd is 0.

STORE Store Register/Immediate into Byte Memory
Instruction Format Flags
Addressing
Syntax Word | Cycles
Word Group 1 Mode N|Z|S|C
Group 2
BR@] = Rd wo |Rd | wox [@ | x| Rs 10/M11* B[R]
W R@] = Rd wox |Rd|wox [@ | x| Rs 10/M11* WiR]
B:[R@] = IMM2 HOOOOOOOK @ Rs| IMM8& 10 B[R]
WR@] = IMM16 OO0 @ Rs| IMM16 10 Wi R]

Rs=R1/R2/R3/R4

Rd=SP/R1/R2/R3/R4/BP/SR/PC

For store operation, only the low byte of Rd is stored to B:[Rs@)]

*. Write to PC

© Generalplus Technology Inc.

PAGE 138

V1.0 November 26, 2007

unSP Programmer’s Guide

5.1.2 Byte Indexed Address

LOAD Load Register with Byte Memory
Instruction Format Flags
Addressing
Syntax Word |Cycles
Word Group 1 Mode NlZ|S|C
Group 2
Rd = B:[BP+IM#] woo | Rd XK M6 - B/7* B [BP+IME] .
URIE
Rd = W [BP+IM6] woo | Rd 00X MG - B/7* | W[BP+IME]

Rd=R1/R2/R3/R4

For load operation, the high byte of Rd is 0.

STORE Store Register/lmmediate into Byte Memory
Instruction Format Flags
Addressing
Syntax Word Cycles
Word Group 1 Mode N|Z|S|C
Group 2
B BP+IM&] = Rd woood | Rd XXX MG - 6/7* | B:[BP+IMG]
W[BP+IMB] = Rd woood | Rd XXX MG - 6/7* | W:[BP+IME]
B[BP+IME] = IMME OO0 MG IMMB 10 B:[BP+IMB]
W [BP+IME] = IMM16 HOOCOOO0 IME MM 16- 10 W[BP+IMEB]

Rd=R1/R2/R3/R4

For store operation, only the low byte of Rd is stored to B:[BP+IM6]
*: Write to PC
5.1.3 Byte Register Indexed Address

LOAD Load Register with Byte Memory
Instruction Format Flags
Addressing
Syntax Word [Cycles
Word Group 1 Mode N(Z[S|C
Group 2
Rd = BI[R@] wox |Rdjxox | @ | x | Rs - a0~ B[R]
VW] -
Rd = Wi[R@] wox |Rdjxox | @ | x | Rs - a0~ WITR]

© Generalplus Technology Inc. PAGE 139 V1.0 November 26, 2007

unSP Programmer’s Guide

Rs=R1/R2/R3/R4

Rd=SP/R1/R2/R3/R4/BP/SR/PC
For load operation, the high byte of Rd is 0.

STORE Store Register/Immediate into Byte Memory
Instruction Format Flags
Addressing
Syntax Word Cycles
Word Group 1 Mode NZ|S|C
Group 2
Bl[R@] = Rd xoxk |Rd | xox | @ | x | Rs - 910~ B[R]
VWI[R@] = Rd wioxx | Rd | woox | @ | x| Rs - a/i10* WIR]
B[R@] = IMmM8 SHOCOOC0EK (@] x |Rs| IMMSE O B[R]
VWITRE@] = IMM16 OO0 (@] x |Rs| IMM16 9 WiIR]

Rs=R1/R2/R3/R4
Rd=SP/R1/R2/R3/R4/BP/SR/PC
For store operation, only the low byte of Rd is stored to B:[[Rs@)] *:
Write to PC
5.1.4 Special Register Access

Stack Segment Register Access

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rs =55 (W=0)
oooonooooos | W | Rs - 2 R -1-1-1-
55=Rs (W=1)

Description: Access the Stack Segment Register (SS) value.

Inner Product Operation Data Segment Access

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ|S|C
MDS = R3
HOOOCOOCONO000 - 2 R -1-1--
R3=MDSs

© Generalplus Technology Inc. PAGE 140 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: Access the Inner Product Data Segment Register (MDS) value with R3.

TSTB/SETBICLRB/INVB Bit operations with direct memory addressing
Instruction Format Flags
Addressing
Syntax Word |[Cycles
Word Group 1 Mode |N|Z|S|C
Group 2
BIT_OP {D:}A16], offset | oo |DS| xox [BIT_OP |offset| A16 8 AlG |-

Description: Executing bit operation with the value at memory location indexed by 16 bits operand. Users
can use the “D:” indicator to access memory space large than 64K words, If “D:” indicator is used, the MSB
6-bit of accessing address will use data segment (DS) value else will be zeroed. The original value of

accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else will be 0.

BIT_OP Syntax Meaning
TSTB [TSTB {D:}[A16], offset; Z= (MEM[{DS,A16}][offset]== 1)? 1'b0: 1’b1
SETB [SETB {D:}[A16], offset; MEM[{DS,A16}][offset]= 1
CLRB |CLRB {D:}[A18], offset; MEM[{DS,A16}][offset]]= O
INVB INVB {D:}[A16], offset; MEM[{DS,A16}][offset]= ~ MEM[{DS,A16}]offset]
Example: SETB [0x5678], 5; /I MEM[0x5678][5]= 1

SETB D:[0x1234], 13; // If DS=3, MEM[{0x31234}][13]= 1

DIVISION Single Instruction Division Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
DIVUU MR, R2 H0O00OO0CN0000 - 48 R
DIVSs MR, R2 HOOOOOOOCEOM00N 47 R

Description: ISA 1.2 used the non-resorting division algorithm to yield a 1-bit quotient at each instruction.
16 instructions at least are needed to implement a division with a 32-bits dividend and 16-bits division.
Therefore, two new division instructions, DIVUU and DIVSS, are introduced to help reducing code size in

ISA-1.3. DIVUU performs dividing unsigned 32-bit dividend (MR) by unsigned

© Generalplus Technology Inc. PAGE 141 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

16-bit divisor (R2). DIVSS performs dividing signed 32-bit dividend (MR) by signed 16-bit divisor (R2)
Example: /I 32-bits unsigned dividend / 16-bits unsigned divisor
// 0x0003_1713 / 0x0625

R4 = 0x0003;
R3 = 0x1713; /l Load data
R2 = 0x0625;

R1=FR;
CLRB R1, 14; /I Clear AQ
flag FR = R1;

R4 = R4 LSL Rf; /1 Shift 1-bit
left MR |= R3 LSL R1;

DIVUU MR, R2; /I Implement an unsigned division

Example: // 32-bits signed dividend / 16-bits signed divisor

/1 OXFFFF_1713 / 0x0625
R4= OxFFFF;

R3=0x1713; /I Load data
R2= 0x0625;

R1=FR;
CLRB R1, 14; /I Clear AQ
flag FR= R1;

R4= R4 LSL R1; /I Shift 1-bit
left MR|= R3 LSL R1;

DIVSS MR, R2; /I Implement an signed division

© Generalplus Technology Inc. PAGE 142 V1.0 November 26, 2007

unSP Programmer’s Guide

6 unSP-2.0 Instruction Set

6.1 unSP-2.0 Instruction Cycles

unSP 2.0 instruction set has a group of instructions the same as unSP 1.2 instruction set which are
introduced at Chapter 4. So, while introducing the same instructions of unsp 2.0 instruction set,
instruction format, cycles, and affected flags are mainly described.

6.1.1 Data-Transfer Instructions

LOAD Load Register with Memory/lmmediate/Register
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N(Z|S|C
Rd = IM& woex | Rd [xxx | IME - 1 MG
Rd = IM16 wooe | Rd [xooccoe |Rs IM16 2 16
Rd = [BP+IME] wox | Rd oo IMB - 1/2 [BP+IM86]
Rd = [AB] xox | Rd |xxx| A6 - 1 [A6] V|V -
Rd = [A18] oo | Rd | xoo [W]Rs A6 2 [A16]
Rd=Rs wood | Rd [xooox |Rs - 1 R
Rd = {D}[Rs@] wox | Rd [xx|D| @ [Rs - 213 [R]
STORE Store Register into Memory
Syntax Instruction Format Cycles Addressing Flags
Word Group 1 Word Group 2 Mode N(Z|S|C
[BP+IMB] = Rd oo | Rd oot| IMB - 1/2 [BP+IME]
[A6] = Rd ®0ox | Rd o AB - 1 [AB]
[A16] = Rd xox | Rd | xooe [WIRs A16 2 e | ||
{D}Rs@] = Rd w0 | Rd ox|D| @ [Rs - 213 R]

Note: For addressing mode [BP+IM6], STORE operation only need 1 cycle.

PUSH Push Registers onto Stack
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C

© Generalplus Technology Inc. PAGE 143 V1.0 November 26, 2007

unSP Programmer’s Guide

PUSH Rx, Ry to [Rs]
woex (Rd| xxx | n |Rs - n+1 [R] S I
Or PUSH Rx to [Rs]
POP Pop Registers from Stack
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|C
POP Rx, Ry from [Rs]
wod | Rd |xxx| n |Rs - n+2 [R] -1-1-1-
Or POP Rx from [Rs]

6.1.2 Data Processing Instructions

ADD Add without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ|S|C
Rd += IM&
o | Rd [xox IME - 1 MG
Rd = Rd + IM&
Rd = Rs + IM16 wox | Rd | xooox |Rs 16 2 IM16
Rd += [BP+IM&]
wooxx | Rd (x| IMB - 172 [BP+IME]
Rd = Rd + [BP+IM8&]
Rd += [A6] R
ek | Rd [xoex AB - 1 [AB]
Rd = Rd + [Af]
Rd = Rs + [A16]
o | Rd | xoox [W]Rs A6 2 [A16]
[A16] = Rd + Rs
Rd +=Rs woox | Rd | xoooor |Rs - 1 R
Rd += [D}[Rs@] ok | Rd |xxx D) @ |Rs - 273 [R]
ADC Add with Carry
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode [N|Z|S|C

© Generalplus Technology Inc. PAGE 144 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
Rd += IM8&, Carry
oo | Rd [0 IM& - 1 IMB
Rd = Rd + IM&, Carry
Rd = Rs + IM16, Carry oo | Rd | xooox |Rs IM16 2 IM16
Rd += [BP+IM&], Carry
Rd = Rd + [BP+IM§], woo | Rd [ox| IMB - 1/2 [BP+IME]
Carry
Rd += [Ag], Carry
woox |(Rd poo| A6 - 1 [AB]
Rd = Rd + [AB], Carry
Rd =Rs + [A16], Carry
oo |Rd pocox |[WIRs A1B 2 [A18]
[A16] = Rd + Rd, Carry
Rd += Rs, Carry oo |Rd oo Rs - 1 R
Rd +={D}Rs@], Carry |xxxx |[Rd |xxx|D|@ |Rs - 213 [R]

SUB Subtract without Carry
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N[Z|S|C
Rd -=IMB&
woox | Rd | IME - 1 IMG
Rd = Rd — IMG
Rd = Rs - IM16 xoox | Rd | w00 |Rs IM16 2 IM16
Rd = [BP+IMG]
wox | Rd o M6 - 1/2 [BP+IME]
Rd = Rd - [BP+IME]
Rd -= [AB] URURY
xoo | Rd [AB - 1 [AB]
Rd = Rd - [Af]
Rd = Rs - [A18]
xoox | Rd | w00 |W([Rs A6 2 [A16]
[A16] = Rd-Rs
Rd-=Rs woot | Rd | oo |Rs - 1 R
Rd = {D}Rs@] xoox | Rd [xxx|D| @ |Rs - 213 [R]
SBC Subtract with Carry
Instruction Format Addressing| Flags
Syntax i Cycles
Word Group 1 Word Group 2 Mode ‘ N | Z ‘ S | C
© Generalplus Technology Inc. PAGE 145 V1.0 November 26, 2007

unSP Programmer’s Guide

Rd -= IMB, Carry
oo | Rd |0 IMB - 1 IMB
Rd = Rd - IM8, Carry
Rd =Rs-IM16, Carry | xxxx [Rd| xooox [Rs IM16 2 IM16
Rd = [BP+IMB], Carry
Rd = Rd - [BF+IM8], oo | Rd |20 IME - 1/2 [BF+IMB]
Carry :
R
Rd -= [Ag], Carry
0o | Rd |0 AG - 1 [A8]
Rd = Rd - [AB], Carry
Rd = Rs - [A16], Carry
o | Rd | wooox W Rs A6 2 [A16]
[A16] = Rd — Rs, Carry
Rd -= Rs, Carry woox [Rd | oooox |Rs - 1 R
Rd = [D:)[Rs@], Carry| xxxx | Rd |xxx|D| @ |Rs - 213 [R]
NEG Negative
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ|S|C
Rd = -IM& o | Rd oo & - 1 IMB
Rd = -IM16 wo | Rd | xoomx |[Rs IM16 2 IM16
Rd = -[BP+IMB] wo | Rd oo IM& - 1/2 [BP+IME]
Rd = -[Ag] wo | Rd oo AS - 1 [AB] :
V-
Rd = -[A16]
oo | Rd | xoox [WIRs A6 2 [A18]
[A16] = -Rd
Rd=-Rs wo | Rd | xooox |Rs - 1 R
Rd = -[D:}[Rs@] waoex | Rd o |D| @ |Rs - 213 [R]
CMP Compare
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ|S|C
CMP Rd, IM5 woo | Rd x| IMB - 1 IMB R R
CMP Rs, IM16 wox | Rd | wooxx |Rs IM16 2 IM16
CMP Rd, [BP+IMB&] | xox | Rd [»o| IMB - 172 [BP+IME]
CMP Rd, [AG] woad | Rd oo AS - 1 [AB]
CMP Rs, [A18]
x| Rd | xoceoc |W(Rs A6 2 [A18]
CMP Rd, Rs

© Generalplus Technology Inc. PAGE 146 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z(S
CMP Rd, Rs woo | Rd | wooox |Rs - 1 R
CMP Rd, {D}[Rs@] | »xox | Rd [xxx|D| @ |Rs - 2/3 [R]
MUL Register Multiplication
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode Z(S
MR = Rd*Rs
XXX Rd | Sd | oo |Rs - 1 R - -
{,ss/,us/ uu}
MULS Inner Product Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S
MR = [Rd] * [Rs]
xxx|Ss|Rd| Sd [x] N |Rs - * K] - -
{ss/us/uu}, N
*Cycles:
N+2 (DM/IM no conflict, FIR_MOVE Off)
2N+1 (DM/IM no conflict, FIR_MOVE On)
2N+2 (DM/IM conflict, FIR_MOVE Off)
3N (DM/IM conflict, FIR_MOVE On)
PAGE 147 V1.0 November 26, 2007

© Generalplus Technology Inc.

unSP Programmer’s Guide

Description: This operation is using a 36-bit arithmetic unit to sum up a consecutive register
multiplication and propagate coefficients for next FIR. It supports 3 kinds of multiplication,
signed*signed, unsigned*signed, and unsigned*unsigned. The signed-to-signed multiplication is used
as default. If the fraction mode is ON, the result of every multiplication will be shifted 1-bit left and then
sum up. The pointer register Rd and Rs will be adjusted automatically. If FIR MOVE mode is ON and
N>1, the contents of memory pointed by Rd are also moved forward. After the operation, the 4-bit
MSB of ALU (guard bits) will be placed at shift buffer (SB). The sign flag will be set if overflow
occurred with the final result.

In unsP2.0, multiplication data will be fetched from INST Bus and DATA Bus concurrently to
accelerating MAC operation, if the parameter array location indexed by Rd, Rs place at different
memory range (IM/DM), MULS will have the best performance or bus conflict stall may be occurred

and need 2 times of executing cycles.

Note: The inner product levels, N=0-15 and N=0 denotes the 16-level inner product operation.

AND Logical AND
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ S|C
Rd &= IM8
oo | Rd oo IM& - 1 IMa
Rd =Rd & IM&
Rd=Rs & IM16 xoox | Rd | woosx [Rs IM16 2 IM16
Rd &= [BP+IMB]
woox | Rd oo IMS - 1/2 [BP+IME]
Rd = Rd & [BP+IM8]
Rd &= [Af] VW] -
ok | Rd [wxx AB - 1 [AB]
Rd = Rd & [Af]
Rd = Rs & [A16]
o | Rd | Xoox W Rs AlG 2 [A16]
[A1B]=Rd & Rs
Rd &= Rs woox | Rd | xoosx [Rs - 1 R
Rd &= {D:}[Rs@] ook | Rd o |D| @ |Rs - 2713 [R]
OR Logical Inclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
Rd |= IM& o
o | Rd oo IM& - 1 IMG R
Rd =Rd | IM3

© Generalplus Technology Inc. PAGE 148 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ[S|C
Rd=Rs|IM16 wox | Rd | xoccxx [Rs IM16 2 IM16
Rd |= [BP+IME]
woo [Rd oo IMB - 1/2 [BP+IVE]
Rd = Rd | [BP+IM&]
Rd |= [AG]
oo | Rd | som AB - 1 [AB]
Rd = Rd | [Ag]
Rd = Rs | [A16]
woox | Rd | 2ooox W Rs AlG 2 [A16]
[A16] =Rd | Rs
Rd|=Rs woo | Rd | wooocxx [Rs - 1 R
Rd |- {D}[Rs@] oo | Rd [xx|D| @ [Rs - 2/3 [R]
XOR Logical Exclusive OR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z [S|C
Rd "= IM&
wox | Rd | xx IM6& - 1 IM&
Rd =Rd * IM&
Rd=Rs *IM16 wox | Rd | oo |Rs IM16 2 IM16
Rd #= [BP+IMB]
woo | Rd o) IMB - 1/2 [BP+IME]
Rd = Rd * [BP+IMB]
Rd /= [AB] V] -] -
oo | Rd oo AB - 1 [AB]
Rd = Rd * [Ag]
Rd = Rs * [A16]
woox | Rd | oo |W | Rs AlG 2 [A16]
[A16] =Rd *Rs
Rd*=Rs wox | Rd | xoooxx |Rs - 1 R
Rd *= [D:}[Rs@] wox | Rd |xxx|D| @ |Rs - 213 [R]
TEST Logical Test
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ[S|C
TEST Rd, IM6 wox | Rd x| IMB - 1 IM6 VI -
TEST Rs, IM16 xxx | Rd | xoomx |Rs IM16 2 IM16
TEST Rd, [BP+IMB] | »eomx | Rd [xxx| IMB - 1/2 [BP+IME]
TEST Rd, [AG] waxx | Rd o AB - 1 [AB]

© Generalplus Technology Inc. PAGE 149 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NlZ[S|C
TEST Rs, [A16]
wox | Rd | xoecooc |W(|Rs A16 2 [A186]

TEST Rd, Rs

TEST Rd, Rs wox | Rd | woxxx |Rs - 1 R

TEST Rd, {D:}[Rs@] | oo | Rd [xxx|D| @ |Rs - 2/3 [R]

ASR-ALU

Register Arithmetic-Shift-Right and Arithmetic/Logical Operation

Syntax

Instruction Format

Word Group 1

Word Group 2

Cycles

Addressing Flags

Mode Z|S

Rd += Rs ASR nn
{,Carry}

Rd -=Rs ASR nn
{,Carry}

CMP Rd, Rs ASR nn

HHAX

Rd nn

Rs

Rd =-Rs ASR nn

Rd &= Rs ASR nn
Rd |- Rs ASR nn

Rd "= Rs ASR nn
TEST Rd, Rs ASR nn
Rd =Rs ASR nn

HHAX

Rd nn

Rs

Note: FIQ, IRQ and user routine has their own Shift buffers. User does not need to save shift buffer for

interrupt routines.

Shift buffer values are unknown after multiplication or filter operations. User should make no

assumptions to its value after the operations.

LSL-ALU Register Logical-Shift-Left and Arithmetic/Logical Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode ‘ N ‘ Z ‘ 5 ‘ c

© Generalplus Technology Inc.

PAGE 150

V1.0 November 26, 2007

unSP Programmer’s Guide

Rd +=RsLSLnn
{,Carry}
Rd-=Rs LSL nn oo | Rd [x oo | nn|Rs - 1 R LR
{,Carry}

CMP Rd, Rs LSL nn

Rd=-Rs LSL nn
Rd &= Rs LSLnn
Rd |= Rs LSLnn

oo | Rd | x |0 [nn|Rs - 1 R V] -
Rd "= Rs LSL nn
TEST Rd, Rs LSL nn
Rd =Rs LSLnn
LSR-ALU Register Logical-Shift-Right and Arithmetic/Logical Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z[S|C
Rd +=Rs LSR nn
{,Carry}
Rd-=Rs LSRnn xoox | Rd | x |00 [nn |Rs - 1 R URIRY
{,.Carry}
CMP Rd, Rs LSR nn
Rd=-RsLSR nn
Rd & Rs LSR nn
Rd |= Rs LSR nn 1
00 | Rd [x| |nn|Rs - 1 R V-
Rd "= Rs LSR nn
TEST Rd, Rs LSR nn
Rd = Rs LSRR nn
ROL-ALU Register Rotate-Left and Arithmetic/Logical Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|C
Rd += Rs ROL nn
{.Carry} 1
0o | Rd [x| xxx |nn|Rs - 1 R VI RURIRY
Rd -= Rs ROL nn {,Carry}
CMP Rd, Rs ROL nn

© Generalplus Technology Inc. PAGE 151 V1.0 November 26, 2007

unSP Programmer’s Guide

Rd =-Rs ROL nn
Rd &= Rs ROL nn
Rd |= Rs ROL nn

o | Rd | x || nn|Rs - 1 R V|- -
Rd = Rs ROL nn
TEST Rd, Rs ROL nn
Rd = Rs ROL nn
ROR-ALU Register Rotate-Right and Arithmetic/Logical Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ|S|J
Rd += Rs ROR nn
{,Carry}
Rd -= Rs ROR nn o | Rd [x| xxx|nn|Rs - 1 R IV
{,Carry}
CMP Rd, Rs ROR nn
Rd =-Rs ROR nn
Rd &= Rs ROR nn
Rd |= Rs ROR nn 1,
0o | Rd | x| nn|Rs - 1 R Vv -] -
Rd "= Rs ROR nn
TEST Rd, Rs ROR nn
Rd = Rs ROR nn
ASR/ASROR/LSL/LSLOR/LSR/LSROR/ROL/ROR Shift Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
Rd=Rd SFT_OPRs | oo | Rd |xx| x| x|Rs - 1/2 R - --

Note: Rs[4:0] valid: ASR/ASROR/LSL/LSLOR/LSR/LSROR; Rs[3:0] valid: ROL/ROR.

TSTB/SETB/CLRB/INVB Bit Operation
Instruction Format Addressing | Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N‘Z‘S‘C

© Generalplus Technology Inc. PAGE 152 V1.0 November 26, 2007

unSP Programmer’s Guide

BIT_OF Rd, Rs ¥ | Rd | o |xx|x| Rs - 1 R -IW|-1-
BIT_OF Rd, offset wood | Rd | oo o | offset - 1 R -IW|-1]-
BIT_ OFP {D}Rd], Rs | oo | Rd |xx|Dox|x| Rs - 1 -IW|-1]-
[R]
BIT_OF {D:}Rd], R .
00 | Rd | x| D [xx| offset - 1 v -1-
offset
DIVQ Divide-Quotient Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
DIvG MR, R2 HHOOOOCOOOODOON - 1 R -1 -1-
DIVS Divide-Quotient Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NZ[S|C
DIvs MR, R2 FOOOOOOOCOCO0OOCK - 1 R - -1 -
EXP Divide Exponent Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
R2 = EXP R4 HHOOOCOO00000 - 1 R -1 - -

6.1.3 Data Segment Access Instruction

Assign Data Segment(DS)value with 6-bit immediate

Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
DS = IMB OO M6 - 1 IMB -{-1-1-

Access Data Segment(DS)value with register

Syntax Instruction Format Cycles | Addressing Flags

© Generalplus Technology Inc. PAGE 153 V1.0 November 26, 2007

unSP Programmer’s Guide

Word Group 1 Word Group 2 Mode N|IZ[S(C

Rs=DS (W=0)
oooocoonsx | W | Rs - 1 R -1-1-1-

DS=Rs (W=1)

Flag Register Access
Instruction Format Addressing Flags
Syntax Cycles

Weord Group 1 Word Group 2 Mode N(Z|S|C

Rs=FR (Ww=0)
_ oooooooonoo | W | Rs - 1 R -1-1-1-

FR=Rs (W=1)

6.1.4 Transfer-Control Instructions

BREAK Software Interrupt Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
BREAK MO0 - 4 [A16] -1-1-1-
CALL Segmented Far Call
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z S|C
CALL A22 X000000oH | A22[21:18] A22[15:0] 3 [A22] -1-1-
CALL MR HOOOCOOOOOOCOONK 4 R - -1-1-
RETF Return from Subroutine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z S|C
RETF HOOOOOOOOOO0NK - G [A22] -{-1-
RETI Return from Interrupt Service Routine
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 (Word Group 2 Mode N|Z|S|C
© Generalplus Technology Inc. PAGE 154 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

6 (IRQ NEST OFF) /7
RETI HO0OOOOOO00ONO0 [A22] - -] -] -
(IRQ NEST ON)
JUMP Branch Operation
Instruction Format Addressing| Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode NIZ|S|C
-1
(not-tak
BRANCH_OP IM6 | BRANCH_OP |xomx |D|IME - IM& -1 -] -
en)/4
(taken)

Description: A conditional short jump instruction to local label (address within £

Note: D=0 denotes the forward jump, else D=1 denotes the backward jump.

BRANCH_OP Condition Description

JCC ==0 carry clear

JB ==0 below (unsigned)
JNAE ==0 not above and equal (unsigned)
JCS C== carry set

JNB C== not below (unsigned)

JAE C== above and equal (unsigned)
JSC S== sign clear

JGE S== great and equal (signed)
JNL S==0 not less (signed)

JSS S== sign set
JNGE S== not great than (signed)

JL S== Less (signed)

JNE ==0 not equal

JNZ Z== not zero

Jz Z== Zero

JE Z== Equal

JPL N==0 Plus

JMI N== Minus

JBE Not (Z==0 and C==1) below and equal (unsigned)
JNA Not (Z==0 and C==1) not above (unsigned)

© Generalplus Technology Inc.

PAGE 155

V1.0 November 26, 2007

unSP Programmer’s Guide

BRANCH_OP Condition Description
JNBE Z==0 and C== not below and equal (unsigned)
JA Z==0 and C== above (unsigned)
JLE Not (Z==0 and S==0) less and equal (signed)
IJNG Not (Z==0 and S==0) not great (signed)
JNLE Z==0 and S==0 not less and equal (signed)
JG Z==0 and S==0 great (signed)
JvC N == not overflow (signed)
JVS N!=8 overflow (signed)
JMP Always unconditional branch
GOTO Unconditional Far Jump
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
GOTO A22 XOoooooxx | A22[21:16] A22[15:0] 3 [A22] -1-1-1-
GOTO MR H0OOCODOCOCCO000 2 R -1 -1-1-
6.1.5 Miscellaneous Instructions
Flag Register:
F E D C B A 8 7 6 5 4 3 2 1 0
- AQ | BNK | FRA | FIR SB FIQ | IRQ | INE PRI
FIR_MOV ON/OFF Enable/Disable Automatic Data Movement for FIR Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z[S|C
FIR_MOW ON
W00COO0O0OXXXX | FIR 1 - ---
FIR_MOV OFF
FIR_MOV ON/OFF Enable/Disable FIR
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N Z|S|C
FIQ ON
00000000000 | FICH | x 1 --1-1-
FIQ OFF
PAGE 156 V1.0 November 26, 2007

© Generalplus Technology Inc.

unSP Programmer’s Guide

IRQ ON/OFF Enable/Disable IRQ
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z[S|C
IRQ ON
xooocooooccosd | IRQ - 1 - - -1-
IRQ OFF
INT Interrupt Set
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|[Z |5 |C
INT FIQ
INT IRQ
xo00ooooccooecd |FIQ| IRQ 1 - - -1-
INT FIQ, IRQ
INT OFF
IRQGNEST IRQ Nest Mode
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N(Z|S|C
IRQMNEST ON
000000000000 [INE| x - 1 - -1-1-
IRQMNEST OFF
SECBANK Switch Register Bank
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
SECBANK ON
OO0 | BNK - 1 - - -1-
SECBANK OFF
FRACTION Fraction Mode
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|[Z|S|C

© Generalplus Technology Inc.

PAGE 157

V1.0 November 26, 2007

unSP Programmer’s Guide

FRACTION ON
0000000000000 | FRA - 1 - - -
FRACTION OFF
NOP No Operation
Instruction Format Addressing Flags
Syntax Cycles
Word Group 1 Word Group 2 Mode N|Z|S|C
NOP HCOO0OO0OO0ON00¢ - 1 - --1--

Description: No operation, only increase PC to the next address.

6.2 New Instructions of unSP-2.0 Instruction Set

u

nSP 2.0 has some new kind of ALU instructions that operation with extend registers.
For this kind of instructions, the operation code contains three parts that are extend code, word group 1,
and word group 2, and extend code, the operation code format is extend code + word group 1 + word

group 2.
Note:

Ra, Rb: RO~R15
Rx, Ry: R8~R15
0 For 16-bit direct memory addressing, there are two kinds of instruction format:
Ra = Rb # [A16]; (W=0)
[A16] = Ra # Rb; (W=1)
On the Cycles column, the number after /’ denotes writing to PC.
For addressing mode [R], the number after /' denotes using [++Ry] prefix.
~ The prefix of source register

Table 6.1
Rs@ Meaning

Ry |No increment/decrement

Ry-- |After ALU_OP, Ry = Ry-1

Ry++ |After ALU_OP, Ry = Ry +1

++Ry Before ALU_OP, Ry = Ry +1

6.2.1 Data-Transfer Instructions

LOAD

Load Extended Register with Memory/lImmediate/Register

Syntax Instruction Format Cycle | Addressing | Flags

© Generalplus Technology Inc. PAGE 158 V1.0 November 26, 2007

unSP Programmer’s Guide

Word
Ext
Word Group 1 Group NZ|SC
Code
2
Rx = IM6& woot | Ry | o IMB - 16b 2 MG
Ra=IM16 woex (Raz2-0|Ra3| »xox |Rb| IM16 | 16b 3 IM16
Rx = [BP+IME] woo | Ry | o IMB - 18b | 2/3 [BP+IM8B]
Rx = [A8] xixx | Rx | xxx AB - 18b | 2 [A6] [
Ra = [A18] wo (Raz2-0|Rad oo |(W)Rb| A16 18b 3 [A18]
Ra=Rb wox |[RaZ2-0|Ra3| xxx |Rb - 18b 2 R
Rx = [D: Ry @] ok | Rx |xox (D] @ Ry - 16b | 3/4 [R]
Description: The group of instruction will be executed for reading of data transmitting, i.e. Rd=X. X
shows different form according to addressing mode.
Example: R10 = 0x28; /I IM6
R12 = 0x2400; 1/ IM16
R13 = [BP+0x08]; /1 [BP+IM6]
R14 =[0x30]; R14 = /I [AB]
[0x2480]; [0x2480] = /I TA16]
R12; SR = R12; /I TA16], R12 is assigned to MEM[0x2480] // R
PC += D:[BP++]; I1'[R]
STORE Store Extended Register into Memory
Instruction Format Flags
Word Cycle | Addressing
Syntax Ext
Word Group 1 Group s Mode |N|Z|S|C
Code
2
[BP+IMEB] = Rx wo | R [IM& - 16b | 273 | [BP+IME]
[AB] = Rx ®oo [Rx | xxx A - 16b 2 [AB]
[A16] = Ra %00 | Raag | Ras [xxx W[Rb| A16 | 16b | 3 ms | |||
{DYRy@] = Rx ®oo | Rx | xxx|D| @ |Ry - 16b | 3/4 [R]

© Generalplus Technology Inc. PAGE 159 V1.0 November 26, 2007

unSP Programmer’s Guide

Description: The group of instruction will be executed for writing of data transmitting, i.e. X=Rd. X

shows different form according to addressing mode. Note: For addressing mode [BP+IM6], STORE

operation only need 2 cycle.

Example: [BP+0x08] = R11; /I [BP+IM6]
[0x30] = R12; 11 [A6]
[0x2480] = R13; 11 [A16]
D:[R12++] = R14; I1R]
PUSH Push Extended Registers onto Stack
Instruction Format Flags
Addressing
Syntax Word Ext | Cycles
Word Group 1 Mode NZSC
Group 2 |Code
PUSH Ry, R to [Rb] ¥ [N | Rx| oo Rb 16b MN+2 - -|=|=|-
Description: Push a set of registers (R1 ~ RL) to memory location indicated by Rb consecutively. Note:
PUSH R9, R15 to [SP] is equivalent to PUSH R15, R9 to [SP].
Example: PUSH R8, R12 to [SP]; // Push R8 through R12, and N=5
Before After
R8 A
Higher address <SP E R9 B
D R10 c
c R11 D
B R12 E
A R13
Lower address =-SP R14
R15
POP Pop Extended Registers from Stack
Instruction Format Flags
Addressing i
Syntax Word | Ext | Cycles
Word Group 1 Mode d
Group 2 |Code

© Generalplus Technology Inc. PAGE 160

V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

POF Ri, Ru from [Rb] ¥ | N [Rx| »xoox |Rb - 16b N+2 - -|=|=|-

Description: Pop a set of registers (R. ~ Ru) from memory location indicated by Rb consecutively.

Example: POP R12, R15 from [SP]; // Pop R12 through R15, and N=4

Before After

RE

Higher address

R10
R11
R12
R13

Plm | OO m
1D QO m

Lower address R14

R15

O T v = I =

6.2.2 Data Processing Instructions

Data Processing Instructions include ALU Operation, Bit Operation, Shift Operation, Mul Operation, Div
Operation, EXP Operation, NOP, etc..

ALU Operation Instructions that carry out the operation as RD = X # Y. X and Y will show different
meanings according to the addressing mode. Because the same explanation for X, Y and the description

for Rs, Rd will be involved in instruction they will be listed in Table 6.2.

Table 6.2 The meanings for X, Y in operation as Rd = X #Y

Addressing Mode X, Y
Xis Rd, Y is IM6. IM6 will be expanded to 16-bit filled with zeros first, and
IM6
then be operated with X.
IM16 Xis Rs, Y is IM16
[BP+IM6] Xis Rd, Y is the memory in PAGEO addressed as (BP+IM6)
[A6] Xis Rd, Y is the memory in PAGEO addressed as (0x00~0x3F)
[A16] Xis Rs. Y is the memory in PAGEO addressed as (0x0000~0xFFFF)
R Xis Rd, Y is Rs.
Xis Rd, Y is the memory address pointed by the offset in Rs. Rs may point
{D}RI
data segment in PAGEOQ as ‘D’ is ignored or in non-PAGEOQ as ‘D’ is not
{D:}R-]
ignored and its page index depends on DS in SR register. Rs can be
{D:}[R++]
increased by 1 before ALU operation or increased/decreased by 1 after ALU
{D:}[++R]
operation.

© Generalplus Technology Inc. PAGE 161 V1.0 November 26, 2007

unSP Programmer’s Guide

ADD Add without Carry
Instruction Format Flags
Addressing
Syntax Word Ext |Cycles
Word Group 1 Mode |N|Z[S|C
Group 2 |Code
Rx += IMG6
oo | Rx | s IMB - 16b 2 IMB
Rx = Rx + IMG
Ra =Rb +IM16 ok | Razo |Raz| woxx |Rb| IMI16 16b 3 IM16
Rx += [BP+IME]
ook | Rx | xex IME 16b | 2/3 [BP+IM8]
Rx = Rx + [BP+IME]
Rx += [AG] V[
oo | Rx | s AB - 16b 2 [AB]
Rx = Rx + [AG]
Ra = Rb + [A16]
ok | Razg | Rag | xxx |W(Rb| A16 16b 3 [A16]
[A16] =Ra +Rb
Ra+=Rb xxx | Razg |Ras| »xxx |Rb - 16b 2 R
Rx += {D:{Ry@] wo [Ry [xox|D| @ Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed for addition operation without carry, i.e. Rd = X+Y.

X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 += 0x28; /I IM6
R12 = R11 + 0x2400; /' 1M 16
R13 += [BP+0x08]; // [BP+IM6]
R14 +=[0x30]; I [A6]
BP = R14 + [0x2480]; 1/ [A16]
[0x2480] = BP + R12; // [A16], BP + R12 is assigned to MEM[0x2480]
SR +=R12; /IR
PC += D:[BP++]; II'[R]
ADC Add with Carry
Instruction Format Flags
Word Cycle | Addressing
Syntax Ext
Word Group 1 Group s Mode Z|S(]
Code
2
© Generalplus Technology Inc. PAGE 162 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Flags
Word Cycle | Addressing
Syntax Ext
Word Group 1 Group s Mode |NZ|S|Q
Code
2
Rx += IM&, Carry
wox | Rxo [xoxx IME - 16b 2 IMB
Rx = Rx + IM8&, Carry
Ra=Rb+IM16, Carry |0 | Razp |Ra: | x0x [Rb| IM16 | 16b 3 IM16
Rx += [BP+IME] , Carry
Rx = Rx + [BP+IMB] || w0 | Rx | xox IME - 16b | 2/3 [BP+IME]
Carry 1
ORURIR
Rx +=[AG] , Carry
wo | Rx | oxxx AB - 16b 2 [AB]
Rx = Rx + [AG] , Carry
Ra =Rb + [A16] , Carry
woo | Razp [Ras [[W|Rb| A16 16b 3 [A16]
[A16] = Ra + Rb, Carry
Ra +=Rb, Carry wexx | Razp |Raz | xxx |Rb - 16b 2 R
Rx += [DRy@], Carry |xxxx | Rx |xxx|D| @ |Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed for addition with carry in arithmetical operation,

i.e. Rd = X+Y+C. X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 += 0x28, Carry; /I IM6
R12 = R11 + 0x2400, Carry; /1 IM16
R13 += [BP+0x08] , Carry; /Il [BP+IM6]
R14 +=[0x30] , Carry; 1/ [AB]
BP = R14 + [0x2480] , Carry; 11 [A16]
[0x2480] = BP + R12, Carry; SR += /I TA16], BP + R12 + C is assigned to MEM[0x2480]
R12, Carry; /IR
PC += D:[BP++], Carry; I1'[R]
sSUB Subtract without Carry
Instruction Format Flags

Addressing
Word | Ext | Cycles
Word Group 1 Mode |NZSd
Group 2|Code

Rx -= IM6& .
oo | Rx | xoo IM& - 16b 2 IrMa R R

Rx = Rx - IMB&

Ra=Rb-IM16 wox | Rasp | Ras | oo [Rb| IM16 | 16b 3 16

© Generalplus Technology Inc. PAGE 163 V1.0 November 26, 2007

unSP Programmer’s Guide

Rx = [BP+IME]

wxxx | R | xox IMG 16b | 2/3 [BP+IME]
Rx = Rx - [BP+IME]
Rx = [AB]

wok | Rx | o AG - 16b 2 [AB]
Rx = Rx - [AB]
Ra = Rb - [A16]

wxxx | Razo | Raz | 2o |WIRb| A16 16b 3 [A16]
[A16]=Ra-Rb
Ra-=Rb ¥xxx | Razo |Raz| xox |Rb - 16b 2 R
Rx = [D:{Ry@] woo | Rx | xoo [Df @ |Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed for subtraction without carry in arithmetical

operation, i.e. Rd = X - Y. X, Y will have different meanings according to the addressing mode. See

Table 6.2.
Example: R10-=0x28; /1 M6
R12 = R11 - 0x2400; /[IM16
R13 -= [BP+0x08]; // [BP+IM6]
R14 -= [0x30]; I [AB]
BP = R14 - [0x2480]; I/ [A16]
[0x2480] = BP - R12; /I [A16], BP - R12 is assigned to MEM[0x2480]
SR -=R12; /IR
PC -= D:[BP++]; II'[R]
SBC Subtract with Carry
Instruction Format Flags
Word Cycle | Addressing
Syntax Ext
Word Group 1 Group s Mode |N|Z|S|C
Code
2
Rx = IMB, Carry A
Xoo | Ry | ox IMB - 16b 2 MG URIEIE
Rx = Rx - IMB, Carry
Ra =Rb-IM16, Carry |Xwox |Ra2-0|Ra3| »ox |Rb| IM16 | 16b 3 IM16
Rx = [BP+IME] , Carry
Rx = Rx - [BP+IME] , Xoox | Ry | ox IMB 16b | 2/3 | [BP+IME]
Carry
Rx = [AB] , Carry
Xooox | Rx | o AB - 16b 2 [AB]
Rx = Rx - [AB] , Carry
© Generalplus Technology Inc. PAGE 164 V1.0 November 26, 2007

unSP Programmer’s Guide

Ra=Rb - [A16] , Camry

xoxx |Ra2-0|Ra3|xx |W|Rb| A16 | 16b 3 [A16]
[A16] = Ra - Rb, Carry
Ra -= Rb, Carry xexx |Ra2-0|Ra3| xxx |Rb - 16b 2 R
Rx = {D:}Ry@], Carry |xxxx| Rx |xxx|[D| @ |Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed for subtraction with carry in arithmetical

operation, i.e. Rd = X - Y - C = X + (~Y) + C. X, Y will have different meanings according to the

addressing mode. See Table 6.2.
Example: R10 -= 0x28, Carry;

/I IM6
R12 = R11 - 0x2400, Carry;
/1 IM16
R13 -= [BP+0x08] , Carry; // [BP+IM6]
R14 -=[0x30], Carry; 11 [AB]
BP = R14 - [0x2480] Carry; 1 TA16]
[0x2480] = BP - R12, Carry; /I [A16], BP - R12 is assigned to MEM[0x2480]
SR -=R12, Carry; /IR
PC -= D:[BP++], Carry; II'[R]
NEG Negative
Instruction Format Flags
Addressing
Syntax Word Ext | Cycles
Word Group 1 Mode |NZ|S|Q
Group 2 | Code
Rx =-IM6& Ko | Rx | xx IME - 16h 2 IM&
Ra =-IM16 xxx | Rasg |Raz| xoxx | Rb IM16 16h 3 IM16
Rx = -[BP+IME]
Ko | R | xax IMB 16h 213 [BP+IM&)
Rx = -[BP+IME]
Rx = -[AB] 11,
Kok | R | AG - 16h 2 [AB] SR R
Rx = -[AB]
Ra = -[A16]
XXX | Raog |Rag|xxx| W | Rb AlG 16h 3 [A16]
[A16] = -Ra
Ra=-Rb xxxX | Razg |Raz| xxx | Rb - 16h 2 R
Rx = -[D:}[Ry@] x| Rx |xxx| D | @ | Ry - 16h 34 [R]

Description: The group of instruction will be executed for negation in arithmetical operation, i.e. Rd = -X =

~X+1. The meaning of X will be described as follow according to the different addressing modes. See

Table 6.2.

© Generalplus Technology Inc.

PAGE 165 V1.0 November 26, 2007

unSP Programmer’s Guide

Example: R10 = -0x28; /I IM6
R12 = -0x2400; /[IM16
R13 = -[BP+0x08]; // [BP+IM6]
R14 = -[0x30]; 11 TAB]
BP=-[0x2480]; /1 [A16]
[0x2480] = -BP; I/l [A16], -BP is assigned to MEM[0x2480]
SR =-R12; /IR
PC = -D:[BP++]; II'[R]
CMP Compare
Instruction Format Flags
Addressin
Syntax Word Ext | Cycles
Word Group 1 g Mode |NZSQ
Group 2 |Code
CMP Rx, IM6& wod | Ry | Xxx M6 - 16b 2 IMB&
CMP Rb, IM16 o | Razg |[Ras| woox [Rb| IM16 16b 3 IM16
CMF Rx, [BF+IM8G] ool | Rxe X MG 16b | 273 [BP+IME]
CMP Rx, [AB] wod | Ry |Mxx AB - 16b 2 [AB]
"1‘ \\'I N
CMP Rb, [A16]
wod | Ragg |Rasxox| W [Rb| A16 16b 3 [A16]
CMP Ra, Rb
CMP Ra, Rb xxxx | Razp|Ras| xxx |Rb - 16b 2 R
CMP Rx, {D}Ry@] | =ox | Rx |Xxx| D |@|Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed for comparison in arithmetical operation, i.e. X - Y. But its
result will not be stored and only affect NZSC flags. X, Y will have different meanings according to the addressing

mode. See Table 6.2.

Example: CMP R11, 0x27; /I IM6
CMP R11, 0x1227; /[IM16
CMP R13, [BP+0x08]; /1 [BP+IM8]
CMP R14, [0x30]; /1 [A6]
CMP R14, [0x2480]; /1 [A16]
CMP R1, R12; /IR
CMP R14, D:[BP++]; I1'[R]

AND Logical AND

© Generalplus Technology Inc. PAGE 166 V1.0 November 26, 2007

unSP Programmer’s Guide

Instruction Format Flags
Word Cycle | Addressing
Syntax Ext
Word Group 1 Group s Mode N(Z|S|C
Code
2

Rx &= IM&

woo | Rx | o IMG - 16b 2 IME&
Rx = Rx & IM&
Ra=Rb & IM16 woo | Ragg |Raz | woeoc (Rb| IM16 | 168b 3 IM16
Rx &= [BP+IME] _

ook | Rx | xx IMG 16b | 273 [BF+IME]
Rx = Rx & [BP+IMB]
Rx &= [Ag] o R Y Y

ook | Rx | xxx AG - 16b 2 [AB]
Rx = Rx & [Af]
Ra=Rb & [A18]

woex | Razo | Ras oo [W{Rb| A16 | 16b 3 [A16]
[A16]=Ra & Rb
Ra &= Rb Wk | Rang |Ras| xxx |Rb - 16b 2 R
Rx &= {D}Ry@] xox | Rx |xxx (D] @ Ry - 16b | 3/4 [R]

Description: The group of instruction will be executed in logical AND operation, i.e. Rd = X &Y. The X

and Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 &= 0x28; /I IM6
R12 = R11 & 0x2400; /I IM16
R13 &= [BP+0x08]; // [BP+IM6]
R14 &= [0x30]; I [A6]
BP = R14 & [0x2480]; /I TA16]
[0x2480] = BP & R12; /I [A16], BP & R12 is assigned to MEM[0x2480]
SR &= R12; IR
PC &= D:[BP++]; 1R]
OR Logical OR
Instruction Format Flags
Addressing
Syntax Word Ext | Cycles
Weord Group 1 Mode NI Z S(C
Group 2 |Code
R |= IM6G 1, :
wood | Rx | oo MG - 16b 2 MG VIR
Foo = Rx | IMG
Ra=Rb|IM186 o | Rasg [Ras| o (Rb| IM16 16b 3 IM16

© Generalplus Technology Inc. PAGE 167 V1.0 November 26, 2007

unSP Programmer’s Guide

Rx |= [BP+IMB]

0o [Rx | o IM& 16b | 2/3 [BP+IME]
Rx = Rx | [BP+IMEA]
Rx |= [A6]

0o [Rx | o AB - 16b 2 [AB]
Rx = Rx | [Af]
Ra =Rb | [A16]

w00 | Razo | Ras | oot [W|RbB| A16 16b 3 [A16]
[A16] =Ra | Rb
Ra|=Rb o | Razo [Ras| »ot [Rb - 16b 2 R
Rx |= {DRy@] woxx | Rx |xxx|D| @ |Ry - 16b [3/4 [R]

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 10.

Description: The group of instruction will be executed in logical OR operation, i.e. Rd = X | Y. The X

and Y will have different meanings according to the addressing mode. See Table 6.2.

Example:

R10 |= 0x28;

R12 = R11 | 0x2400;
R13 |= [BP+0x08];

/1 IM6
// IM16
/I [BP+IM6]

R14 |= [0x30];
BP = R14 | [0x2480];
[0x2480] = BP | R12;

11 [A8]
/I [A16]

// [A16], BP | R12 is assigned to MEM[0x2480]

SR |=R12; /IR
PC |= D:[BP++]; I [R]
XOR Logical Exclusive OR
Instruction Format Flags
Addressing
Syntax Word | Ext |Cycles
Word Group 1 Mode [N|Z|S|C|
Group 2 |Code
Rx = IM6 ' .
wood [Rx | oo MG - 16b 2 IM&G LRIRIK!
Rx = Rx * IM8&
Ra=Rb"IM16 0k | Razo |Rax| xox |Rb| IMI16 16b 3 IM16
Rx *= [BEP+IM8]
wood | Rx | o IMEB 16b | 2/3 [BP+IME]
Rx = Rx * [BP+IMB]
Rx "= [AB]
wik [Rx | xoox AB - 16b 2 [AB]
Rx = Rx " [AG]
© Generalplus Technology Inc. PAGE 168 V1.0 November 26, 2007

unSP Programmer’s Guide

Ra = Rb *[A16]

xxxx | Razp [Raa| 2o (WIRb| A18 16b 3 [A16]
[A16]=Ra"Rb
Ra "= Rb waox | Razg |Raz| xx [Rb - 18b 2 R
Rx *= {DYRy@] wox | Rx |xox|D| @ [Ry - 18b | 3/4 [R]

Description: The group of instruction will be executed in logical exclusive OR operation, i.e. Rd = X *

Y. The X, Y will have different meanings according to the addressing mode. See Table 6.2.

Example: R10 A= 0x28; /I IM6
R12 = R11 * 0x2400; I IM16
R13 A= [BP+0x08]; I/ [BP+IM®6]
R14 = [0x30]; 11 [A6]
BP = R14 ~ [0x2480]; //[A16]
[0x2480] = BP A R12; SR = /[[A16], BP * R12 is assigned to MEM[0x2480]
R12; /IR
PC A=D:[BP++]; /R]
TEST Logical TEST
Instruction Format Flags
Addressing
Syntax Word | Ext |Cycles
Word Group 1 Meode (NZSC
Group 2| Code
TEST Rx, IM6& 0K o | xxx IMe 16b 2 MG
TEST Rb, IM16 Wil | Ragg |Raa | oo [Rb| IM16 16b 3 IM16
TEST Rx, [BF+IMB] XOOCK Rx | xxx MG 16b | 2/3 [BP+IME]
TEST Rx, [AB] KHHX Rx | xxx A 16b 2 [AB] I
KRR R
TEST Rb, [A16]
¥xxx | Ra.g |Raa [0 WIRb| A1l6 16b 3 [A16]
TEST Ra, Rb
TEST Ra, Rb xxxx | Rap|Raz| »ox |Rb 16b 2 R
TEST Rx, {DHRy@] | xxxx Rx |xxx|D| @ |Ry 16b | 3/4 R]

Description: The group of instruction will be executed for logical AND operation, i.e. X&Y. However, its

result will not be stored and it only affects NZ flags. The X and Y will have different meanings according to

the addressing mode. See Table 6.2.

Example: TEST R11, 0x27; /l IM6
TEST R11, 0x1227; I IM16
© Generalplus Technology Inc. PAGE 169 V1.0 November 26, 2007

=
(oA :
Generalplus UnSP Programmel”s GU|de
TEST R13, [BP+0x08]; // [BP+IM#6]
TEST R14, [0x30]; /1 [A6]
TEST R14, [0x2480]; /1 [A16]
TEST R1, R12; /IR
TEST R14, D:[BP++]; //[R]
TSTE/SETB/CLRB/INVE Bit operations with direct memory addressing
Instruction Format Flags
Addressing
Syntax Word [Cycles
Word Group 1 Mode |N|Z|S|C
Group 2
BIT_OP {D:}A16], offset | xoom DS | woeo |BIT_OF |offset| A16 2 AlG v -

Description: Executing bit operation with the value at memory location indexed by 16 bits operand.
Users can use the “D:” indicator to access memory space large than 64K words, If “D:” indicator is used,
the MSB 6-bit of accessing address will use data segment (DS) value else will be zeroed. The original

value of accessing bit will affect the zero flag, that is, if the original bit is zero, the Zero flag will be 1 else

will be 0.
BIT_OP Syntax Meaning
TSTB TSTB {D:}[A16], offset; Z= (MEM[{DS,A16}][offset]== 1)? 1’b0: 1’b1
SETB SETB {D:}[A16], offset; MEM[{DS,A16}][offset]= 1
CLRB CLRB {D:}[A16], offset; MEM[{DS,A16}][offset]]= 0
INVB INVB {D:}[A16], offset; MEM[{DS,A16}][offset]= ~ MEM[{DS,A16}]offset]
Example: SETB [0x5678], 5; /I MEM[0x5678][5]= 1

SETB D:[0x1234],13; // If DS=3, MEM[{0x31234}][13]= 1
6.2.3 Instruction Set Summary

Table 6.3
Type Operation Cycles FIE/IDC B|/A|9 8/ 7|6|5/4/3/ 2|10
DSI6 DS=IM6 1 1/1/1}1]1{1[1]0/0|0 IM6
1/1/1(1]-]-/0]0|0|1 A22[21:16]
CALL CALL A22 3
AZE
fal
1/1/1}1}1{1[1]0/1/|0 A22[21:16]
JMPF GOTO A22 3
AZE
n

© Generalplus Technology Inc. PAGE 170 V1.0 November 26, 2007

G

Generalplus unSP_Programmer’s Guide
Type Operation Cycles E D|C A9 8|7/ 6|5(/4/3/2 1|0
JMPR GOTO MR 2 1011]1 1010 {1] -|-]-]-|-]-

FIR_MOV FIR_MOV ON/OFF 1 1011]1 -|-]1]0/1/0/0|0]1 O~fir
Fraction Fraction ON/OFF 1 11111 -/-1110(1]/0/0|0|1|1]|Fr
INT SET INT FIQ/IRQ 1 11111 -|-]1,0[1/0]|0|0|0]|F|I

IRQ IRQ ON/OFF 1 11111 -|-]1,0[{1/0|0|1/0]|0|I
SECBANK | SECBANK ON/OFF 1 1011]1 -|-]1/0/1/0|0|1]|0|1]|S
FIQ FIQ ON/OFF 1 11111 -|-]1,0[{1/0|0O|1T|1|F|O
IRQ Nest Mode| IRQNEST ON/OFF 1 1011]1 -] -1 0[1/0|0]|1T|1|N|1
BREAK BREAK 4 1011]1 -l -1, 0011 -|0]0]|0
CALLR CALL MR 4 1011(1 -|-]/110[1|1]|-]-]/0|0|1
DIVS DIVS MR,R2 1 1011(1 -|-]/1,0[{1|1]|-]-|0]1]|0
DIVQ DIVQ MR,R2 1 11111 -l -1l o1ty 1| -]1-1/01/1
EXP R2 = EXP R4 1 1011]1 -|-/1,0[{1/1]|-]-|1]0]0
NOP NOP 1 1011]1 -l -1 01 1]|-]-|1]0]1
DS Access DS=Rs/ Rs=DS 1 (c) 11111 -/ -10/0[{0|1]0|W Rs
FR Access FR=Rs/ Rs=FR 1 (d) 11111 -/ -10]0[{01]1|W Rs
MUL MR = Rd* Rs 1 (e) 111 g Rd Srg 0/0/0]0 |1 Rs
MULS MR = [Rd]*[Rs], size (f) 111 g Rd Srgl | SIZE Rs
Register BITOP BITOP Rd,Rs 1 (9) 1/1]0 Rd 0| O/0|Bitop| 0 Rs
Register BITOP| BITOP Rd,offset 1 1771110 Rd 0| 0|1 Bitop offset
Memory BITOP | BITOP DS:[Rd],offset 1 1111]0 Rd 1| 1|Ds|Bitop offset
Memory BITOP| BITOP DS:[Rd],Rs 1 1/11]0 Rd 1| 0|Ds|Bitop| 0 Rs
BITOP 11111 Ds|1|/0| 0|1 |Bitop offset
Memory BITOP 2
DS:[A16],offset Al
Shift Rd=Rd LSFT Rs 12 (h) 1/11]0 Rd 1 g LSFT 1 Rs
RETI RETI 6/7 (i) 0|01 o|j1/0[1j0/0|1|1|0|0]|O
RETF RETF 6 0|0 |1 o|j1/0[1/0/0|1]/0|0|0|O

Base+Disp6 |Rd = Rd op [BP+IM6]| 1/2) OoP Rd 0| 00 IM6
Imm6 Rd = Rd op IM6 1 (k) OoP Rd 0| 01 IM6
Branch Jxx label 1/4 0] COND? 111{0| 0/D IM6

PUSH/POP Rx,Ry
Indirect N+1/N+2 (m) OoP Rd 0| 1|0 SIZE Rs
to/from [Rs]

© Generalplus Technology Inc. PAGE 171 V1.0 November 26, 2007

unSP Programmer’s Guide

Type Operation Cycles F/ E/ID/IC/B/A/9|/8/7 |6|5/4 3/2|1|0
DS _Indirect |Rd =Rd op DS:[Rs++]| 2/3 (n) OoP Rd 01 |1|Ds| @ Rs
OoP Rd 10 |0/0]0]|1 Rs
Imm16 Rd = Rs op IMM16 2
MV
OP Rd 10 |00 1|W Rs
Direct16 Rd = Rs op A16 2
A16
Direct6 Rd = Rd op A6 1 OP Rd 111 11 A6
Rd = Rd op Rs SFT
Register
sfc 1 (o) OoP Rd 1 SFT SFC Rs
Ext Code 1/1/(1{1/1, 11,11 1,00/ 0/0/0]|0
Ra
Ext Register Ra=Ra op Rb
2 OP Ras.o /0 |0/0]0 Rb
PUSH/POP Rx, Ry
Ext Push/Pop
to/from [Rb] N+2/N+3 (m)W | SIZE Rx 00 [0O]|1/0 Rb
Ra
Ext IMM16 Ra=Rb op IMM16 33 Ras.o 0 |1/0]0 Rb
[a=) -
MV
Ra
Ext A16 Ra=Rb op [A16] 2; Ras.o 0o |1/1|W Rb
A16
Ext DS_Indirect| Rx=Rx op Ds:[Ry++] | 3/4 (n) OoP Rx 0|1 |0|Ds|] @ Ry
Ext IM6 Rx=Rx op IM6 2 OP Rx 111 |0 IM6
Ext Base+Disp6| Rx=Rx op [BP+IM6] | 2/3 () oP Rx 01 |1 IM6
Ext A6 Rx=Rx op [A6] 2 OoP Rx 111 |1 A6

(a) Rd/Rs: R0-R7, Ra/Rb: R0-R15, Rx/Ry: R8-R15.
(b) Extend Operation: use 0xff80 as extension prefix code and followed with extend instruction.
(c) DS Access: W = 0 Rs=Ds, W = 1 Ds=Rs.
(d) FR Access: W = 0 Rs=FR, W = 1 FR=Rs.
(e) MUL: Srq = 0, Rd is unsigned else Rd is signed, Srs = 0, Rs is unsigned else Rs is
signed. Operation Mode: Rd*Rs: unsigned x unsigned, unsigned x signed, signed x

signed.
Rd: support R0O-R6 only.

(f) MULS: if FIR MOV flag is on, the parameter array index by Rd will be shift 1 word forward, so need
additional N cycles.

Sra = 0, Rd is unsigned else Rd is signed, Srs = 0, Rs is unsigned else Rs is

signed. Operation Mode: Rd X Rs: unsigned x unsigned, unsigned x signed, signed

x signed. Size=0~16 and OP[6:3]=4'b0000 indicate executing 16 levels inner

© Generalplus Technology Inc. PAGE 172 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

product.

Rd: support RO-R6 only.

(No Bus Conflict, FIR_MOV OFF): N+2

(No Bus Conflict, FIR_MOV ON): 2N+1

(Bus Conflict, FIR_MOV OFF): 2N+2
(Bus Conflict, FIR_MOV ON): 3N

(9) Bit op:
00 01 10 11
test set clear inverse

(h) Shift: ASR/LSL/LSR/ROL/ROR: 1 cycle, ASROR/LSLOR/LSROR: 2

cycles LSFT:
000 001 010 011 100 101 110 111
ASR ASROR LSL LSLOR LSR LSROR ROL ROR

(i) RETI: IRQ interrupts with IRQNEST ON must restore FR from stack, so 7 cycles are needed to

execute RETI, other interrupts need 6 cycles only.

(j) Base+Disp6: read operation need 1 cycle to calculate BP+IM6 address first, so cycle count will

increase by 1, write operation only need 1 executing cycle. Extend operation will increase additional 1

cycle.

Rd: support R0-R6 only.
(k) IMM6: Rd: support RO-R6 only.

(I) Branch taken: 4 cycles, not taken: 1 cycle.

(m)Push: N+1 cycles, Pop: N+2 cycles, POP with update PC: N+4, Extend operation will increase

additional 1 cycle.

(n) DS_indirect: read memory with [++Rs] prefix need 1 cycle to calculate [++Rs] address, so cycle

count is 3, other operation only need 2 executing cycles. Extend operation will increase additional 1

cycle. @: prefix

00 01 10 11
Rs Rs-- Rs++ | ++Rs
(o) SFT: Shift type
000 001 010 011 100 101
NOP ASR LSL LSR ROL ROR
SFC: Shift count
00 01 10 11
1 2 3 4

(p) If any instruction updates PC value, CPU will flush the pipeline registers and need 2 additional

cycles to fetch the new instruction.

© Generalplus Technology Inc.

PAGE 173

V1.0 November 26, 2007

Generalplus unSP Programmer’s Guide

6.3 Stall Condition

unSP 2.0 is a pipelined architecture micro processor, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible combinations of instructions
in the pipeline. If some combinations of instructions cannot be accommodated because of resource

conflicts, unSP 2.0 will add stall cycles to pipeline data path to resolve such hazards.

All stall condition of unsP 2.0 are list as below.

1. DAG Read after Write: Data read after write stall, because unSP 2.0 separate memory read and
memory write at different pipeline stage, we must make sure data read/write sequence must keep in

order of instruction execution

D I
. B M 4
&
f] [o |
+
bl [w][e
DAG_WRITE
DAG_READ
Figure 6.1
Example :
[R2] = RS;
R4 = [0x3]; /I If this instruction will read data memory and
/I the previous would write data memory, stall 1 cycle.
2. DAG Read after Branch: Branch condition is tested at execution stage of branch instruction and

the next 2 instructions would be fetched into pipeline sequentially. if branch is taken, these two
instructions will be dropped, there may be wrong data read access occurred if the next instruction of

branch need to read data from memory. unsP 2.0 will stall 1 cycle to avoid such wrong access.

© Generalplus Technology Inc. PAGE 174 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

F H D ‘ M E

‘ F ‘ D I E Branch instruction

D |
Branch condition st
Next instruction need to read data from meémery
Figure 6.2
Example:
JNE labelf; /I if there are memory read access instruction after branch will stall 1 cycle.
R2 = [R3];
3. IAG input RF not ready: If IAG use RF value as next address source, but the referenced RF

value is not ready or is updating in EXE stage. unSP 2.0 will stall until RF value is ready. We don’t

forward register write back from EXE stage to decode stage in this situation to cut critical path.

] M E @— current update RFn
I [M E
F
I] 1 I
i M E

next instrection will update EFn
IAG use EFn value as next address source

Figure 6.3
Example:
R3 = 0x1234;
GOTO MR; /I use register which is destination register of previous instruction
/I as next instruction address source will stall 1 cycle
R2 = R1; [instruction A
NOP;

MR = R1 * R2; // MULS will send Rs to IAG Bus as address, and the previous instruction A
/l will update Rs in decode stage of MULS , stall 1 cycle to cut critical path

© Generalplus Technology Inc. PAGE 175 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

4. DAG input RF not ready: If DAG use RF value as next address source, but the referenced RF
value is not ready or is updating in EXE stage. unSP 2.0 will stall until RF value is ready. We don’t

forward register write back from EXE stage to decode stage in this situation to cut critical path.

D M E W—— current update RFn
I N M
I ["1 I
| I M E

next instruction will update EFn

DAG use BFn value as next address source

Figure 6.4
Example:
R2=R1+2;
R3=[R2]; // If use register which is the destination register of previous instruction // as memory access source

register will add 1 stall cycle

5. MAC forward stall: Cut critical path from MAC unit output in execution stage to register files

read in decode stage

JERlE
‘ F | [W I
I D Ivl E |
oicienl
‘ MAC operation, will update R4,R3
RF_A or EF_B select R4 or B3 as source register
Figure 6.5
Example:
MR =R1* R2;
R1 +=1;
R2 -= R4; /I'lf Rs=R3, R4 will stall 1 cycle.
6. Bank change stall: In unSP 2.0, registers value are read at decode stage, and bank flag is

changed at execution stage, we must use bank flag to select which bank registers are read in decode

© Generalplus Technology Inc. PAGE 176 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

stage, so if bank flags will be changed by SETF or SET FR instruction, we must stall pipeline before bank
flag is changed.

SETF or UPDATE_FR instruction

: D M = updating bank Ilag

[M F |a— SETFor UPDATE_FR instructions

will update bank flag.

RE_A or RF_B read registers value
Figure 6.6
Example:
SECBANK ON; // if this instruction will change bank (SECBANK on/off or FR=Rs) and

/I either the next 2 instruction use R1-R4 as source register will stall 1 cycle.

R2=R1+2;
FR = R2; /I if this instruction will change bank (SECBANK on/off or FR=Rs) and
/I either the next 2 instruction use R1-R4 as source register will stall 1 cycle.
NOP;
R1=R3-R2;
7. Shifter source not ready stall: Shifter unit is placed at MR stage, we need to stall pipeline if any

resource needed by shift operation is not ready.

D M I
I L M
[} Il ‘ E ‘ Shift instruction
L J
I] ‘ M ‘ E ‘

SFT_CNT from BF_A but BF_An
SFT_IM from EF_BE but RF_B no
ROLROR operation need Flag_C but Flag_C not ready
Figure 6.7
Example : R1 = 0x5;

© Generalplus Technology Inc. PAGE 177 V1.0 November 26, 2007

G

Generalplus unSP Programmer’s Guide

R2 = R2 ASR R1;// SFT_CNT comes from register which is destination register of
/I previous instruction will stall 1 cycle
R2 = R3;
R4 = R2 LSL R1; /I SFT_IN comes from register which is destination register of // previous

instruction will stall 1 cycle
R1=R1 + 0x1234;

R2 = R3 ROL R4; /l ROR/ROL operation needs C Flag which would be updated

/l by previous instruction will stall 1 cycle

8. Delay calculate register not ready: DS_IND with ++Rs prefix, POP, BP+IM6 instructions need to
read memory with address calculated by register and offset, To cut critical path, unsP 2.0 will delay 1
cycle and store register value into pipelined registers then send this register and offset to DAG to
calculate address. If the source register value is not ready in decode stage, unSP 2.0 will stall until

register is ready.

F D il E
F D M E w—— Rn will be updated
F D M E
F 9
I D M ‘ E ‘
D5_IND, POF, BP+IM6 use REn as address source of memory read access
Figure 6.8
Example :
BP = 0x5678;
R2 = [BP+0x34]; /I Use the register which will be updated by previous

instruction // as address source of memory read

9. MAC Write Stall: Stall for MULS operation to update memory content. If FIR_MOQOV flag is on,
unSP 2.0 will shift right 1 word of the memory content indexed by Rd. We need to stall 1 cycle between

continuous data read for data write back.

10. DATA Bus not ready: unSP 2.0 will stall if data bus not ready.

1. INST Bus not ready: unSP 2.0 will stall if inst bus not ready.

12. BUS Fighting stall: unSP 2.0 will stall if INST Bus and Data Bus is fighting.

© Generalplus Technology Inc. PAGE 178 V1.0 November 26, 2007

Generalplus UnSP Programmel”s GU|de

7 Appendix A Difference Between unSP-1.2 & unSP-1.3

B New behavior of checking interrupt

In unsP 1.3, CPU does not check interrupt after RETI instruction. Besides, CPU dos not check

interrupt after MDS access instructions

B Configurable multiplier

The multiplication of unSP 1.2 needs 9 cycles to sum up partial products. In order to accelerate the
multiplication, the multiplier comes with unSP1.3 can be configured to sum up these partial product

in one-cycle. Nevertheless, extra 6K gates are needed for this multiplier

W Stack access pin

The stack access pin output (high active) is used to indicate that CPU is accessing (reading or
writing) stack. The system designer can use this signal to detect stack underflow or overflow. The

system becomes more robust.

A pin is added to indicate current instruction reads or writes the stack. These instructions are:
¢ PUSH ... to [SP]
¢ POP ... from [SP]

¢ The action of pushing SR and OC when an interrupt occurs

¢ The action of pushing FR, SR and PC when higher priority interrupt occurs in nested interrupt

mode
¢ RETI
¢+ RETF
¢ CALL

B Modified nested interrupt supports

IRQ_NEST mode is always ON. Then, unSP 1.3 will save PC, SR and FR into memory when

serving IRQ or FIQ, and restore them after IRQ or FIQ service routine.

IRQ_ENABLE is turned off automatically when unSP 1.3 performing IRQ service routine. User can
turn on IRQ_ENABLE in IRQ service routine to allow higher priority IRQ to interrupt. unSP 1.3 can
re-execute FIQ service routine when serving FIQ if FIQ_ENABLE is on. Both FIQ_ENABLE and

IRQ_ENABLE are turned off automatically when unSP 1.3 performing FIQ service routine.
B Address change pin

The address change pin output (low active) is used to indicate that address is changing.

© Generalplus Technology Inc. PAGE 179 V1.0 November 26, 2007

unSP Programmer’s Guide

8 Appendix B Difference Between unSP-2.0 & unSP-1.2

The behavior of CS auto increase in memory bank boundary

Since unsP 2.0 is a 4 stage pipelined architecture processor, it will use a 22-bit IAG unit to
pre-fetch the instruction data and increase instruction address automatically, the behavior of CS
auto increase in memory bank boundary is different from unSP 1.2 which designed by multi-cycle
architecture.

For example:

INST address from 0x1 FFFE — 0x20000, the behavior of SR and PC

Table 8.1
unSP2.0 unSP1.2
INST address SR PC SR PC
Ox1FFFE 0x0001 OxFFFE 0x0001 OxFFFE
Ox1FFFF 0x0001 OxFFFF 0x0002 OxFFFF
0x20000 0x0002 0x0000 0x0002 0x0000
0x20001 0x0002 0x0001 0x0002 0x0001

Disable interrupt detect instructions.

unSP 1.2 will check the interrupt signals(FIQ/IRQ) at the last cycle of every instruction except RA16

(Direct16 instruction with read) for semaphore implementation of the real-time operating system.

unSP 2.0 check the interrupt signals(FIQ/IRQ) at the decode stage of every instruction except
RA16/RW16 (Direct16 instruction with read/write) and RETI instructions for semaphore
implementation of the real-time operating system and make sure the user's program will be
executed at least 1 instruction after leaving interrupt service routine to avoid infinite loop of

interrupt servicing.

© Generalplus Technology Inc. PAGE 180 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

9 Appendix C Comparison Between unSP Versions

unsSP 1.0 | unsP 1.1 | unSP 1.2 | unsP 1.3 | unSP 2.0
Memory Bus Separate
Single Bus Single Bus Single Bus Single Bus
Inst/Data
Address depth 22-bit 22-bit 22-bit 22-bit 22-bit / 22-bit
Data width 16-bit 16-bit 16-bit 16-bit 16-bit / 16-bit
Pipeline No No No No 4 stage pipeline
General Registers
Yes Yes Yes Yes Yes
(R1-R4)
System Registers
Yes Yes Yes Yes Yes
(SP, BP, SR, PC)
Second Bank
Registers No No Yes Yes Yes
(SR1-SR4)
Inner Flag Register
No No Yes Yes Yes
(FR)
Extend Registers
No No No No Yes
(R8-R15)
Interrupt Sources 10 10 10 10
10 (FIQ,IRQ,BRK)
(FIQ,IRQ,BRK) | (FIQ,IRQ,BRK) | (FIQ,IRQ,BRK) | (FIQ,IRQ,BRK)
Nested IRQ No No Yes Yes Yes
Average CPI 6 5 5 5 2
2220umx488.4u
2100umx950um
Area (TSMC m CPU: 14.3K
- 750umx650um CPU: 19.5K
0.35um) CPU: 9K ICE: 3.7K
ICE: 5K
ICE: 3K
Speed - 80MHz(TC) 111.1 MHz(TC) | 58.8 MHz(WC) | 109.6 MHz(TC)
Power - 0.16 mA/MHz 0.3 mA/MHz - -
Signed x signed | Signed x signed | Signed x signed
Signed x signed Signed x Signed x Signed x
Signed x signed)])
MAC operation Signed x unsigned unsigned unsigned
Signed x unsigned
unsigned Unsigned x Unsigned x Unsigned x
unsigned unsigned unsigned
MAC Cycles 13 12 12/13(uxu) 12/13(uxu) 1
Guard bits No No 4 4 4
© Generalplus Technology Inc. PAGE 181 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

unsSP 1.0 | unsP 1.1 | unSP 1.2 | unsP 1.3 | unSP 2.0
Fraction mode No No Yes Yes Yes
1- bit
Non-restoring
1- bit 1 bit
division
Non-restoring Non-restoring
Division No No (DIVS/DIVQ) and
division division
single instruction
(DIVS/DIVQ) o (DIVS/DIVQ)
division
(DIVUU/DIVSS)
EXP No No Yes Yes Yes
Bit operation Register / Register / Register /
No No
Memory Memory Memory
16 bits shifter No No Yes Yes Log Shifter
DS access No No Yes Yes Yes
FR access No No Yes Yes Yes
SS access No No No Yes No
MDS access No No No Yes No
Far jump Yes Yes Yes Yes Yes
Far indirect jump No No Yes Yes Yes
Far indirect call No No Yes Yes Yes
Extend Operations No No No No Yes
Immediate (16 / 116) Yes Yes Yes Yes Yes
Direct (A6 / A16) Yes Yes Yes Yes Yes
Indirect (DS
Yes Yes Yes Yes Yes
indirect)
Relative (BP+IM6) Yes Yes Yes Yes Yes
Multiple indirect
Yes Yes Yes Yes Yes
(Push/Pop)
Byte Register
No No No Yes No
Indirect
Byte Indexed
No No No Yes No
Address
Byte Register
No No No Yes No
Indexed
© Generalplus Technology Inc. PAGE 182 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

10 Appendix D CPU Cycle Formula and Examples

c.1unsp 1.2 Cycle Formula

Example
(SPCEO060)
Program
Code Width CPU Cycle Formula
Instruction Memory Example Condition
(unit: word) (if Rd is NOT pc)
Data
Memory
Counter(N)

Control Flow
CALL 2 9+2*PM+2*DM* 13 call func_1
RETF 1 8+PM+2*DM 11
RETI (IRQ, FIQ, BRK) 1 8+PM+2*DM 11
RETI (Nested IRQ ON) 1 10+PM+3*DM 14
BREAK 1 10+2*PM+2*DM 14
GOTO 2 5+2*PM 7
JUMP (non-taken) 1 2+PM 3
JUMP (taken) 1 4+2*PM 6
GOTO MR 1 4+2*PM 6
CALL MR 1 8+2*PM+2*DM 12
NOP 1 2+PM 3
Operation Mode
INT FIQ, IRQ 1 2+PM 3
INT OFF 1 2+PM 3
INT FIQ 1 2+PM 3
INT IRQ 1 2+PM 3
IRQ ON/OFF 1 2+PM 3
FIQ ON/OFF 1 2+PM 3
FIR_MOV ON/OFF 1 2+PM 3
FRACTION ON/OFF 1 2+PM
SECBANK ON/OFF 1 2+PM 3
IRQNEST ON/OFF 1 2+PM 3

+ PM denotes the waiting cycle from program memory, and DM denotes the waiting cycle from data memory.

© Generalplus Technology Inc.

PAGE 183

V1.0 November 26, 2007

[|

Gossralohis unSP_Programmer’s Guide
Example
(SPCEO060)
Program
Code Width CPU Cycle Formula 1
Instruction Memory Example Condition
(unit: word) (if Rd is NOT pc)
Data
1
Memory
Counter(N)| 5
Push/ Pop
PUSH BP, R1 to [SP];
PUSH Ry, Re to [Rs] 1 4+2*N+N*DM+PM 20
SP points to DM
POP R1, BP from [SP];
POP Ry, Ru to [Rs] 1 4+2*N+N*DM+PM 20 '
SP points to DM
Multiplication
MR = Rd* Rs,{ss,us,uu} 1 13+PM 14 MR=R1*R2
MR=[Rd]*[Rs],{ss,us,uu},N 1 6+10*N+N*(PM+DM)+PM 67 MR=[R1]*[R2], 5;
Division
DIVS MR,R2 1 2+PM 3 DIVS MR,R2
DIVQ MR,R2 1 3+PM 4 DIVQ MR,R2
Exponential Detect
R2=EXP R4 1 2+PM 3 R2=EXP R4
Shift Operation
Rd=Rd SFT Rs 1 8+PM 9 R1=R1 ASR R2
Bit Operation
Bitop Rd, Rs 1 4+PM 5 TSTB R1,R2
Bitop Rd,offset 1 4+PM 5 SETB R2,0x3
Bitop D:[Rd], Rs 1 7+PM+2*DM 10 CLRB [R1],R3
Bitop D:[Rd],offset 1 7+PM+2*DM 10 INVB [R2],0x4
Flag Setting
DS=Rs / Rs=DS 1 2+PM 3
FR=Rs / Rs=FR 1 2+PM 3
ALU Operation
Rd= Rd op [BP+IM6] 1 6+PM+DM 8 R1=R1+[BP+3]
Rd=Rd op D:[Rs@] 1 6+PM+DM 8 R3=R3+D:[R1++]
Rd =Rd op Rs SFT N 1 3+PM 4 R2=R2-R3 ASR 2
© Generalplus Technology Inc. PAGE 184 V1.0 November 26, 2007

-
Az

Generalplus UnSP Programmel”s GU|de

Example

(SPCE060)

Program
Code Width CPU Cycle Formula 1
Instruction Memory Example Condition
(unit: word) (if Rd is NOT pc)

Data

Memory

Counter(N)| 5

Rd=Rd op IM6 1 2+PM 3 R1=R1+0x8
Rd=Rd op IM16 2 4+2*PM 6 R2=R1+0x5678
Rd=Rd op [A6] 1 5+PM+DM 7 R3=[0x20]
Rd=Rs op [A16] 2 7+2*PM+DM 10 R4=[0x7600]

© Generalplus Technology Inc. PAGE 185 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

c.2unSP 1.3 Cycle Formula

Example
(SPCEO060)
Program
Code Width| CPU Cycle Formula
Instruction Memory Example Condition
(unit: word) (if Rd is NOT pc)
Data
Memory
Counter(N)

Control Flow
CALL 2 9+2*PM+2*DM* 13 call func_1
RETF 1 8+PM+2*DM 11
RETI (IRQ, FIQ, BRK) 1 8+PM+2*DM 11
RETI (Nested IRQ ON) 1 10+PM+3*DM 14
BREAK 1 10+2*PM+2*DM 14
GOTO 2 5+2*PM 7
Jcond (not-taken) 1 2+PM 3
Jcond (taken) 1 4+2*PM 6
GOTO MR 1 4+2*PM 6
CALL MR 1 8+2*PM+2*DM 12
NOP 1 2+PM 3
Operation Mode
INT FIQ, IRQ 1 2+PM 3
INT OFF 1 2+PM 3
INT FIQ 1 2+PM 3
INT IRQ 1 2+PM 3
IRQ ON/OFF 1 2+PM 3
FIQ ON/OFF 1 2+PM 3
FIR_MOV ON/OFF 1 2+PM 3
FRACTION ON/OFF 1 2+PM 3
SECBANK ON/OFF 1 2+PM 3
IRQNEST ON/OFF 1 2+PM 3
Push/ Pop

+ PM denotes the waiting cycle from program memory, and DM denotes the waiting cycle from data memory.

© Generalplus Technology Inc.

PAGE 186

V1.0 November 26, 2007

[|

Gossralohis unSP_Programmer’s Guide
Example
(SPCEO060)
Code Width| CPU Cycle Formula Program
Instruction Rd is NOT Memory Example Condition
(unit: word) | (if pc) Data
Memory
Counter(N)
PUSH BP, R1 to [SP];
PUSH Ry, R. to [Rs] 1 4+2*N+N*DM+PM 20 SP points to DM
POP R1, BP from [SP];

POP Ry, Ri to [Rs] 1 4+2*N+N*DM+PM 20 SP points to DM
Multiplication
MR= Rd* Rs,{ss,us,uu} 1 13+PM 14 MR=R1*R2
MR=[Rd]*[Rs],{ss,us,uu},N 1 6+10*N+N*(PM+DM)+PM 67 MR=[R1]*[R2], 5;
Division
DIVS MR,R2 1 2+PM 3 DIVS MR,R2
DIVQ MR,R2 1 3+PM 4 DIVQ MR,R2
DIVUU MR,R2 1 48+PM 49 DIVUU MR,R2
DIVSS MR,R2 1 47+PM 48 DIVSS MR,R2
Exponential Detect
R2=EXP R4 1 2+PM 3 R2=EXP R4
Shift Operation
Rd=Rd SFT Rs 1 8+PM 9 R1=R1 ASR R2
Bit Operation
Bitop Rd, Rs 1 4+PM 5 TSTB R1,R2
Bitop Rd,offset 1 4+PM 5 SETB R2,0x3
Bitop D:[Rd], Rs 1 7+PM+2*DM 10 CLRB [R1],R3
Bitop D:[Rd],offset 1 7+PM+2*DM 10 INVB [R2],0x4
Bitop D:[A16],offset 2 8+PM+2*DM 11 CLRB [0x1234],0x3
Flag Setting
DS=Rs / Rs=DS 1 2+PM 3
FR=Rs / Rs=FR 1 2+PM 3
SS=Rs / Rs=SS 1 2+PM 3
MDS=R3 / R3=MDS 1 2+PM 3
ALU Operation
© Generalplus Technology Inc. PAGE 187 V1.0 November 26, 2007

G

Generalplus unSP_Programmer’s Guide
Example
(SPCEO060)
Program
Code Width| CPU Cycle Formula 1
Instruction (wnit: word) (i Rd is NOT pc) Memory Example Condition
Data
1
Memory
Counter(N) 5
Rd= Rd op [BP+IM6] 1 6+PM+DM 8 R1=R1+[BP+3]
Rd=Rd op D:[Rs@] 1 6+PM+DM 8 R3=R3+D:[R1++]
Rd =Rd op Rs SFT N 1 3+PM 4 R2=R2-R3 ASR 2
Rd=Rd op IM6 1 2+PM 3 R1=R1+0x8
Rd=Rd op IM16 2 4+2*PM 6 R2=R1+0x5678
Rd=Rd op [A6] 1 5+PM+DM 7 R3=[0x20]
Rd=Rs op [A16] 2 7+2*PM+DM 10 R4=[0x7600]
Rd UB/W:[Rs@)] 1 10+PM+DM 12
B:[Rs@]=IMM8 2 10+PM+DM 12
W:[Rs@]=IMM 16 2 10+PM+DM 12
Rd UB/W:[BP+IM6] 1 6+PM+DM 8
B:[BP+IM6]=IMM8 2 6+PM+DM 8
W:[BP+IM6]=IMM16 2 6+PM+DM 8
Rd UB/W:[Rs@)] 1 9+PM+DM 11
B:[Rs@]=IMM8 2 9+PM+DM 11
W:[Rs@]=IMM16 3 9+PM+DM 11

© Generalplus Technology Inc. PAGE 188 V1.0 November 26, 2007

G

Generalplus

unSP Programmer’s Guide

c.2unSP 2.0 Cycle Formula

Example
(SPCE060)
Code Width CPU Cycle Formula Program Example Condition
Instruction (unit: word) (if Rd is NOT pc) Memory (may not reveal to
Data customers)
Memory
Counter(N)
Control Flow
CALL 2 3+2*PM+2*DM 7 call func_1
RETF 1 2+PM+2*DM 5
RETI (IRQ, FIQ, BRK) 1 2+PM+2*DM 5
RETI (Nested IRQ) 1 3+PM+3*DM 7
BREAK 1 4+2*PM+2*DM
GOTO 2 3+2*PM 5
Jcond (not-taken) 1 1+PM 2
Jcond (taken) 1 4+2*PM 6
GOTO MR 1 3+2*PM 5
CALL MR 1 4+2*PM+2*DM 8
NOP 1 1+PM 2
Operation Mode
INT IRQ, FIQ 1 1+PM
INT OFF 1 1+PM 2
INT FIQ 1 1+PM 2
INT IRQ 1 1+PM 2
IRQ ON/OFF 1 1+PM 2
FIQ ON/OFF 1 1+PM 2
FIR_MOV ON/OFF 1 1+PM 2
FRACTION ON/OFF 1 1+PM 2
SECBANK ON/OFF 1 1+PM 2
IRQNEST ON/OFF 1 1+PM 2
Push/ Pop
PUSH R1, BP to [SP],
PUSH R, R. to [Rs] 1 1+N+N*DM+PM 12 SP points to DM
© Generalplus Technology Inc. PAGE 189 V1.0 November 26, 2007

=
4 >) :
Generalplus UnSP Programmel’ S GU|de
Example
(SPCEO060)
Program Example Condition
Code Width CPU Cycle Formula 1
Instruction Memory (may not reveal to
(unit: word) (if Rd is NOT pc)
Data customers)
1
Memory
Counter(N) | 5

POP R1, BP from [SP],

POP R, R from [Rs] 1 2N NDMEEM " SP points to DM

Multiplication

MR = Rd* Rs, {ss,us} 1 1+PM 2 MR=R1*R2
DM/PM no conflict, MR=[R1],[R2], 5
FIR_MOV OFF 13 Rd points to OM, Rs
2+N+N*MAX(PM,DM)+PM points to PM
DM/PM no conflict,
FIR_MOV ON MR=[R1],[R2], 5
1+2*N+N*MAX(PM,DM)+N* 2 Rd points to OM, Rs

MR = [Rd]*[Rs], {ss,us}, N 1 DM+PM points to PM
DM/PM conflict, MR=[R1],[R2], 5
FIR_MOV OFF 23 Rd points to OM, Rs
2+2*N+N*(PM+DM)+PM points to PM
DM/PM conflict, MR=[R1],[R2], 5
FIR_MOV ON 30 Rd points to OM, Rs
3*N+(N+1)*PM+(2N-1)*DM points to PM

Division

DIVS MR,R2 1 1+PM 2 DIVS MR,R2

DIVQ MR,R2 1 1+PM 2 DIVQ MR,R2

Exponential Detect

R2 = EXP R4 1 1+PM 2 R2 = EXP R4

Shift Operation

Rd = Rd LSFT Rs 1 1+PM 2 R1=R1ASR R2

Bit Operation

Bitop Rd, Rs 1 1+PM 2 TSTB R1,R2

Bitop Rd,offset 1 1+PM 2 SETB R2,0x3

Bitop D:[Rd], Rs 1 1+PM+DM 3 CLRB [R1],R3

© Generalplus Technology Inc. PAGE 190 V1.0 November 26, 2007

G

Generalplus UnSP Programmel”s GU|de
Example
(SPCEO06
Program Example Condition
Code Width CPU Cycle Formula
Instruction Memory (may not reveal to
(unit: word) (if Rd is NOT pc)
Data customers)
Memory
Counter(N)
Bitop D:[Rd],offset 1 1+PM+DM 3 INVB [R2],0x4
Bitop D:[A16],offset 2 2+2*PM+DM 5 SETB D:[0x7016],0x8
Flag Setting
DS=Rs / Rs=DS 1 1+PM 2
FR=Rs / Rs=FR 1 1+PM 2
ALU Operation
Rd= Rd op [BP+IM6] 1 2+PM(read) / 1+PM(stall) 3 R1=R1+[BP+3]
2+PM+DM / 3+PM+DM R3=R3+D:[R1++]/
Rd=Rd op D:[Rs@] 1 4
([++Rs]) R3=R3+D:[++R1]
Rd = Rd op Rs SFT sfc 1 1+PM 2 R2=R2-R3 ASR 2
Rd=Rd op IM6 1 1+PM 2 R1=R1+0x8
Rd=Rd op IM16 2 2+2*PM 4 R2=R1+0x5678
Rd=Rd op [A6] 1 1+PM+DM 3 R3=[0x20]
Rd=Rs op [A16] 2 2+2*PM+DM 5 R4=[0x7600]
Extend Instruction
Ra=Ra op Rb 2 2+2*PM 4 R2=R8+R3
PUSH R8,R13 to [SP],
PUSH Rx,Ry to [Rb] 2 2+N+N*DM+2*PM 14
SP points to DM
POP R8,R13 from [SP],
POP Rx,Ry from [Rb] 2 3+N+N*DM+2*PM 15)
SP points to DM
Ra=Rb op IM16 3 3+3*PM 6 R9=R4+0x5678
Ra=Rb op [A16] 3 3+3*PM+DM 7 R10=R1+[0x7016]
3+2*PM+DM / 4+2*PM+DM R8=R8+D:[R10++] /
Rx=Rx op D:[Ry@] 2 6
([++Rs]) R8=R8+D:[++R10]
Rx=Rx op IM6 2 2+2*PM 4 R9=R9+0x8
3+2*PM(read) /
Rx=Rx op [BP+IM6] 2 5 R8=R8+[BP+3]
2+2*PM(stall)
Rx=Rx op [A6] 2 2+2*PM+DM 5 R15=[0x20]
© Generalplus Technology Inc. PAGE 191 V1.0 November 26, 2007

	Table of Content
	V1.0

	1 Introduction
	1.1 General Description
	1.2 Pin Diagram
	1.2.1 Pin Diagram and Description of unSP-1.2
	1.2.2 Pin Diagram and Description of unSP-1.3
	1.2.3 Pin Diagram and Description of unSP-2.0

	1.3 Features
	1.3.1 Features of unSP-1.0 and unSP-1.1
	1.3.2 Features of unSP-1.2
	1.3.3 Features of unSP-1.3
	1.3.4 Features of unSP-2.0

	1.4 Architecture
	1.4.1 Architecture of unSP-1.0 and unSP-1.1
	1.4.2 Architecture of unSP-1.2
	1.4.3 Peripheral Interface of unSP-1.2
	1.4.4 Architecture of unSP-1.3
	1.4.5 Architecture of unSP-2.0
	1.4.6 Pipeline Feature of unSP-2.0

	1.5 Register
	1.5.1 Register of unSP-1.0 and unSP-1.1
	1.5.2 Register of unSP–1.2
	1.5.3 Register of unSP-1.3
	1.5.4 Registers of unSP- 2.0

	1.6 Memory
	1.6.1 Memory Map of unSP
	1.6.2 Memory Interface of unSP-1.2
	1.6.3 Memory Architecture of unSP-1.3
	1.6.4 Memory Architecture of unSP-2.0
	1.6.5 Memory Interface of unSP–2.0

	1.7 Addressing Modes
	1.7.1 6 addressing modes of unSP-1.0 and unSP-1.1
	1.7.2 6 addressing modes of unSP-1.2 and unSP-2.0
	1.7.3 9 addressing modes of unSP-1.3

	1.8 Interrupts
	1.8.1 Interrupts of unSP-1.0 and unSP-1.1
	1.8.2 Interrupts of unSP-1.2
	Interrupts
	Interrupts

	1.8.3 Interrupts of unSP-1.3
	1.8.4 Interrupts of unSP-2.0

	1.9 Data Types
	1.10 ALU Operation Types
	1.11 Conditional Branches

	2 unSP- 1.1 Instruction Set
	2.1 unSP Instructions Classification
	2.1.1 Notation
	2.1.2 Instruction Classification

	2.2 unSP Instruction Format
	2.3 unSP-1.1 Instruction Set
	2.3.1 Data-Transfer Instructions
	2.3.2 Arithmetic/Logical-Operation Instructions
	2.3.3 Transfer-Control Instructions
	2.3.4 Miscellaneous Instructions

	3 unSP -1.0 Instruction Set
	3.1 General Description
	3.2 unSP-1.0 Instruction Cycles

	4 unSP -1.2 Instruction Set
	4.1 unSP-1.2 Instruction Set
	4.1.1 Data-Transfer Instructions
	4.1.2 Data Processing Instructions
	4.1.3 Data Segment Access Instruction
	4.1.4 Transfer-Control Instructions
	4.1.5 Miscellaneous Instructions
	4.1.6 Instruction Set Summary

	5 unSP-1.3 Instruction Set
	5.1 unSP-1.3 Instruction Set
	5.1.1 Byte Register Indirect
	5.1.2 Byte Indexed Address
	5.1.3 Byte Register Indexed Address
	5.1.4 Special Register Access

	6 unSP-2.0 Instruction Set
	6.1 unSP-2.0 Instruction Cycles
	6.1.1 Data-Transfer Instructions
	6.1.2 Data Processing Instructions
	6.1.3 Data Segment Access Instruction
	6.1.4 Transfer-Control Instructions
	6.1.5 Miscellaneous Instructions

	6.2 New Instructions of unSP-2.0 Instruction Set
	6.2.1 Data-Transfer Instructions
	6.2.2 Data Processing Instructions
	6.2.3 Instruction Set Summary

	6.3 Stall Condition

	7 Appendix A Difference Between unSP-1.2 & unSP-1.3
	8 Appendix B Difference Between unSP-2.0 & unSP-1.2
	9 Appendix C Comparison Between unSP Versions
	10 Appendix D CPU Cycle Formula and Examples
	c.1 unSP 1.2 Cycle Formula
	c.2 unSP 1.3 Cycle Formula
	c.2 unSP 2.0 Cycle Formula

